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Problem Set #3 Solutions 

Problem 3.1: (French 5-10)1 Coupled Oscillators using two springs 
Let the displacement from the equilibrium posi
tions for masses m1 and m2 be x1 and x2 respec

tively. Then the tensions in the two strings are 
T1 = kx1 and T2 = k(x2 −x1), respectively. Now 

m1ẍ1 = +k(x2 − x1) − kx1 

m2ẍ2 = −k(x2 − x1) 

Substituting m1 = m2 = m and ωs 
2 = k/m: 

¨ = ω2(x2 − 2x1)x1 s 

¨ = ω2(x1 − x2) (1)x2 s 

+

Equilibrium

Equilibrium

x1

x2

T1

T2

T2

T1 = |kx1|
T2 = |k(x2 − x1)|

Let x1 = C1 cos(ωt), and x2 = C2 cos(ωt). Now using these in Eq. 1 

− ω2C1 + 2ωs 
2C1 = ωs 

2C2 

−ω2C2 + ωs 
2C2 = ωs 

2C1 (2) 

Method I: Without using Cramer’s Rule 
From Eq. 2 we get 

ω2 ω2 − ω2C1 s s ω4 ω2 ω2 = = = 2ω4 − 3ω2 + ω4 ω4 − 3ω2 + ω4 = 0 s s s s sω2C2 2ω2 − ω2 
s  s
     
3ω2 ± 9ω4 − 4ω4 √ ω2 √ ks s s sω2 = = 3 ± 5 = 3 ± 5

2 2 2m    √ √ √ √k k ω+ 3 + 5 5 + 1 
ω+ = (3 + 5) ω− = (3 − 5) = √ = √ 

2m 2m ω− 3 − 5 5 − 1  √ ω2 2ω2 2C1 s sFor ω+ = (3 + 5)k/2m = = √ = √ 
C2 2ω2 − ω2 4ωs 

2 − (3 + 5)ωs 
2 1 − 5s +  √ ω2 2ω2 2C1 s sFor ω− = (3 − 5)k/2m = = √ = √ 

C2 2ω2 − ω2 4ω2 − (3 − 5)ω2 1 + 5s − s s 

Method II: Using Cramer’s Rule 

On collecting coefficients of C1 and C2 in Eq. 2 we get (2ωs 
2 − ω2)C1 − ωs 

2C2 = 0 and 
−ωs 

2C1 + (ωs 
2 − ω2)C2 = 0. 

1The notation “French” indicates where this problem is located in one of the textbooks used for 8.03 in 2004: 
French, A. P. Vibrations and Waves. The M.I.T. Introductory Physics Series. Cambridge, MA: Massachusetts 
Institute of Technology, 1971. ISBN-10: 0393099369; ISBN-13: 9780393099362. 
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This is the same as the last equation in line 1 of Method I. From here on, the solution is identical. 

a) The tension in the string is T ≈ M2g. 
The equation of motion for mass M2 in the x-
direction is as follows 

M2ẍ2 = −M2g sin(θ)
 
g


M2ẍ2 = −M2 (x2 − x1)
l 

and for mass M1 is 
g

M1ẍ1 = −kx1 + M2 (x2 − x1)
l 

b) & c) Substituting ωs 
2 = k/M2, ωp 

2 = g/l and M1 

ẍ2 + ωp
2 

ẍ1 + (ωs 
2 + ωp

2)x1 − ωp
2 x2 = 0 

Let x1 = C1 cos(ωt), x2 = C2 cos(ωt). − ω2C2 + ωp 
2C2 = ωp 

2C1 

Substituting gives: −ω2C1 + (ω2 + ω2)C1 = ω2C2 (3)s s p 

Method I: Without using Cramer’s Rule 

−ω2 + ω2 ω2C1 p p 
ω4 ω2 = = = ω4 − ω2ω2 − 2ω2ω2 + ω2 + ω4 
p s p p s pω2 −ω2 + ω2 + ω2C2 p p s 

2ωp 
2 + ωs 

2 

ω4 − (2ω2 + ω2)ω2 + ω2ω2 = 0 ω2 = ± 
1 

(2ω2 + ω2)2 − 4ω2ω2 
p s p s p s p s2 2 

Problem 3.2: (French 5-11) Coupled spring and pendulum 

+

kx1

T

T

θ

M2

M2g

M1

l

T cos θ ≈ M2g

T cos θ ≈ M2g

T sin θ ≈ M2g sin θ

T sin θ ≈ M2g sin θ

M1g

N = M1g + T cos θ

g

= M2 = M we get 

x2 − ω2 
px1 = 0 

�1/2
2ωp 

2 + ωs 
2 2ω2 + ω2  
  1/21
 1
 

ω2 =
 ω± = p s ± 4ωp 
4 + ωs

44ωp 
4 + ωs 

4±
 
2 2
 2 2


C1 −ω2 + ω2 −ω2 − 4ω4 + ω4 
+ p s p s

For ω+ = = 
ω2 2ω2C2 p p 

−ω2 −ω2 + 4ω4 + ω4)
− + ω2 s p sC1 p

For ω− = = 
ω2 2ω2C2 p p 
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Method II: Using Cramer’s Rule 
Collecting coefficients in Eq. 3: ω2C1 + (ω2 − ω2)C2 = 0 and (−ω2 + ω2 + ω2)C1 − ω2C2 = 0. p p	 p s p

0 ω2 − ω2 
p 

0 −ωp 
2 

C1 = 
ω2 ω2 − ω2 
p	 p 

−ω2 + ω2 + ω2 −ω2 
p s p 

ωp 
2	 0 

0 
C2 = 

−ω2 + ωp 
2 + ωs 

2 

ω2 ω2 − ω2 
p	 p 

−ω2 + ω2 + ω2 −ω2 
p s p 

Non-zero values of C1 and C2 only possible if 
ω2 ω2 − ω2 
p	 p = 0	 ⇒ −ω4 − (ω2 − ω2)(−ω2 + ω2 + ω2) = 0 p p p s−ω2 + ω2 + ω2 −ω2 
p s p 

ω4 − (ω2 + 2ω2)ω2 + ω2ω2 = 0s p p s 

This is the same as found for Method I (see second line). From here on, the solution is identical. 

Problem 3.3: (Bekefi & Barrett 1.16)2 Coupled oscillators using three springs 
Side (a) of the figure shows the sys
tem at rest and side (b) shows it at 
some random time t. Displacements 
from Equilibrium are x1 and x2. Now 
y1 = d1 + d2 + x1 and y2 = d2 + x2 

a) The equations of motion are: 

mẍ1 =	 −2kx1 − k(x1 − x2) 

⇒ ẍ1 + 3ω0
2 x1 − ω0

2 x2 = 0 

mẍ2 = +k(x1 − x2) 

⇒ ẍ2 + ω0
2 x2 − ω0

2 x1 = 0 

+

(a) (b)

x1

x2

x2

y1
d1

y2d2

where ω0
2 = k/m 

b) Substituting x1 = A cos(ωt) and x2 = B cos(ωt) in the equations of motion gives 
A(3ω2 − ω2) = Bω2 and Aω2 = B(ω2 − ω2)0 0 0 0 

2The notation “Bekefi & Barrett” indicates where this problem is located in one of the textbooks used in 8.03 
in 2004: Bekefi, George, and Alan H. Barrett Electromagnetic Vibrations, Waves, and Radiation. Cambridge, MA: 
MIT Press, 1977. ISBN: 9780262520478. 
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A ω2 ω2 − ω2 
0 0 ω4 − 4ω2ω2 = = 0 = 3ω0

4 
0 + ω4 

B 3ω0
2 − ω2 ω0

2 

√ 
ω4 − 4ω0

2ω2 + 2ω0
4 = 0 ω2 = ω0

2(2 ± 2) ± 

√ B √ √ B √ 
For ω1 = ω0(2 − 2)1/2 = 1 + 2 For ω2 = ω0(2 + 2)1/2 = 1 − 2 

A A 
Hence the general solutions are: 

y1(t) = d1 + d2 + x1(t) = d1 + d2 + A cos(ω1t + α) + B cos(ω2t + β)√ √ 
y2(t) = d2 + x2(t) = d1 + d2 + (1 + 2)A cos(ω1t + α) + (1 − 2)B cos(ω2t + β) (4) 

c) Side (a) of the figure shows 
the normal mode with higher 
frequency ω2 such that x2(t) = √ 
(1 − 2)x1(t). Side (b) shows 
the normal mode with lower 
frequency ω1 such that x2(t) = √ 
(1 + 2)x1(t). 

+

(a) (b)

x1

x1

x2

x2

x2

y1
d1

y2d2

Problem 3.4: Driven coupled oscillator
 
a) The equation of motion for mass M2 is unchanged M2ẍ2 = 
−M2g sin(θ) and for mass M1 is 

g
M1ẍ1 = −k[x1 − X(t)] + M2 (x2 − x1)

l 
g

M1ẍ1 + kx1 + M2 (x1 − x2) = kX0 cos(ωt)
l 

b) Substituting ωs 
2 = k/M2, ωp 

2 = g/l and M1 = M2 = M , 

ẍ2 + ωp 
2 x2 − ωp

2 x1 = 0 

ẍ1 + (ωs 
2 + ωp 

2)x1 − ωp
2 x2 = ωs 

2X0 (5) 

+

x1

x2

k

X0 cos(ωt)

M1

M2

θ

Equilibrium for both masses

Let x1 = C1 cos(ωt) x2 = C2 cos(ωt). Now using these in Eq. 5 

ω2C1 + (ω2 − ω2)C2 = 0 (−ω2 + ω2 + ω2)C1 − ω2C2 = ω2X0 (6)p p s s p s 
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0 ω2 − ω2 
p 

C1 = 
ω2 
s X0 

ω2 
p 

−ω2 
p 

ω2 − ω2 
p 

= 
kX0(g − lω2) 

Mlω4 − (2Mg + kl)ω2 + kg 

−ω2 + ω2 
p + ω2 

s −ω2 
p 

ω2 0p 

−ω2 + ω2 + ω2 ω2 
p s s X0 kgX0

C2 = = 
ωp 
2 ω2 − ωp 

2 Mlω4 − (2Mg + kl)ω2 + kg 

−ω2 + ω2 + ω2 −ω2 
p s p 

These are the steady state solutions. The general problem is a linear combination between the 
transient problem and the steady state solutions. Notice that the transient problem has four 
adjustable parameters which follow from the initial conditions. 

c) The figure shows the plot of am

plitudes C1 (blue line) and C2 (red 
line) as a function of the frequency. 
Note: At ω = 0, the amplitudes are 
C1 = C2 = X0. This figure is unrealis
tic. It was derived (i) under the small 
angle approximation and (ii) for zero 
damping. Thus, the very large ampli

tude for C1 and C2 as shown are mean

ingless. If you add sufficient damping, 
and if you cannot make the small an
gle approximations, because the angles 
are large, the problem becomes sub
stantially more complicated. But it 
can be solved numerically. You will 
then find meaningful values for the 
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+ 

amplitudes. A more insightful way to express (and plot) the amplitude of the pendulum would be 
to do this in terms of the angle θ, rather than C2. 

d) We can note from the functional form of C2 that it cannot have the value zero (except for 

ω → ∞). However, C1 will be zero when g − lω2 = 0 ω = ωp = 
g

C1 → 0. This is the 
l 

resonance frequency of the pendulum. Thus, at this frequency, the two horizontal forces on the 
upper mass, kXo cos(ωt) and T sin(θ), cancel. Since sin(θ) < 1, kXo must always be smaller than 
T . At first sight, this inequality seems a bit bizarre, as, according to our derivation, the frequency 
at which the upper mass stands still is independent of the spring constant k. Also, keep in mind 
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that we never had to make any assumption regarding k in our derivation (the inequality must have 
been met automatically without our realizing it). 

You SHOULD also ask yourself the question: How on Earth can the pendulum swing if the 
mass attached to the spring does not move at all; what is driving the pendulum? The 
answer is simple: it is not possible! It is only possible in our dream-world of zero damping. In 
the presence of damping, no matter how little, the peculiar state is unstable. This can easily be 
seen as follows. 

Assume that the system is in that state. That means that at any moment in time the net horizontal 
force on the pendulum mass is zero. Thus, the vectorial sum of the spring force and T sin(θ) must 
be ZERO. However, if the mass on the spring is not moving, the pendulum is no longer driven, 
and thus its amplitude will decay, and the net force on the mass on the spring is no longer zero, 
and thus that mass will start to move. Thus, the peculiar state is unstable. You will be able to go 
through that “special” state by varying ω, but you cannot ”stop” there. However, I demonstrated 
in lectures (9/28) using 3 different driven systems, that you can get very close to those “special” 
states, and that is already amazing (and very non-intuitive). 
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