
Massachusetts Institute of Technology OpenCourseWare
 

8.03SC Fall 2012 

Notes for Lecture #7: Many Coupled Oscillators & Wave Equations 

Carts on the air track, coupled with springs, supported longitudinal oscillations. Oscillation per

pendicular to the alignment of the oscillators is called transverse oscillation. We are already 

familiar with these ideas, and the idea of polarization in transverse oscillation has already been 

discussed. Transverse motion of a series of beads with mass m separated by a distance g along a 

string is examined. The motion is considered purely transverse and this is called the y direction. 

The “boundary conditions” are that the two ends are fixed and do not move. 

For modest amplitudes, the tension T is constant, and motion 

along the string can be neglected (3:00). Although the ten

sions are the same in all segments of the string, the direction 

changes (slightly) at each bead. Therefore, the components 

of tension acting in the y direction on each bead are slightly 

different, resulting in a net force. Newton’s Second Law for 

the pth bead (one for each p from 1 to N) is: 

(yp − yp−1) (yp+1 − yp) 
mÿp = −T sin αp−1 + T sin αp = −T + T (6:35)

g g 

Dividing by m, we get ÿp + 2ω0
2yp − ω0

2(yp+1 + yp−1) = 0 where ω0
2 = 

T 
. Note that the definition 

mg
of ω0 not only makes sense dimensionally, but reflects reality in that tighter strings will have 

higher frequency, and strings with more mass or longer length (between particles) will have lower 

frequency. The boundary conditions are y0 = 0 and yN+1 = 0 at the fixed ends. (9:20) 

For simplicity in visualization, we now consider a two-particle system. Based on what was done 

before, we can easily guess that the normal modes will be a lower frequency one with both particles 

oscillating up and down together, and a higher one with them out of phase, oscillating on opposite 

sides of equilibrium. We get differential equations for the two points: ÿ1 +2ω0
2y1 − ω0

2(y2 + y0) = 0 

and ÿ2 + 2ω0
2y2 − ω0

2(y3 + y1) = 0. Since y0 = 0 and y3 = 0, we have: ÿ1 + 2ω0
2y1 − ω0

2y2 = 0 and 

ÿ2 + 2ω0
2y2 − ω0

2y1 = 0. As a trial function for normal modes, we use yp = Ap cos ωt, where for 

generality p goes from 0 to N +1 (12:30), and can immediately differentiate and substitute giving 

the two equations: −ω2A1 + 2ω2A1 − ω2(A2 + A0) = 0 and −ω2A2 + 2ω2A2 − ω2(A3 + A1) = 0.0 0 0 0 

As before, the absence of first derivatives means that all terms have a common cos ωt which can 

be divided out. Keeping A0 and A3 (even though they are 0 in this particular case), we can write 

these equations in a more generic form: (14:40): 



−ω2Ap + 2ω0
2Ap − ω0

2(Ap+1 + Ap−1) = 0. 

There are N linear equations to solve, which is not easy if N is large. Based on intuition, we guess 

that normal modes should look like sin curves with increasing number of bumps. So we can try, for   
pnπ

mode n, Ap,n = Cn sin (17:00). Notice that for p = 0 and p = N + 1, this is always 0, 
N + 1   

pπ
thus automatically satisfying the boundary conditions. For n = 1, Ap,1 = C1 sin , there 

N + 1  
2pπ

are zeroes only at the ends: p = 0 and p = N + 1. The next mode, Ap,2 = C2 sin , has an 
N + 1

additional zero in the middle at p = 
2
1 (N + 1), and so on. 

Now, we need to determine the frequencies of the normal modes (21:30). From the general form 
Ap+1 + Ap−1 −ω2 + 2ω0

2 

above, we get = . Trigonometry1 can be used to show that the left side 
ω2Ap 0   

nπ 
of the equation (the ratio of As) is given by 2 cos . From that, the mode frequencies 

N + 1
nπ 

are ωn = 2ω0 sin (24:20). Folding in the amplitude already found, the displacement of 
2(N + 1) 

particle p in mode n is yp,n = Ap,n cos ωnt. In the case N = 5 (N +1 = 6), ω1 = 2ω0 sin π ≈ 0.51ω02(6) 

(27:50). It is a useful exercise to calculate the other four mode frequencies and compare them to 

what is in the lecture. Note that the numbers are not in a simple ratio. A general solution will 

be a linear superposition of all of these normal modes. Because the ratios of the frequencies are 

not ratios of integers, superpositions of these modes will never repeat exactly the shape at any 

given time! (32:30) A sketch shows the particles lying on sinusoids, but it is pointed out that 

they are really connected with straight lines, not arcs, and particles often do not reach the nominal 

amplitude of their mode (if they are not in the right place). A computer demo follows (36:00). 

Individual modes are shown, and then superpositions (“cocktails”). The simple normal modes, 

when all added together, lead to a very complex or even chaotic motion (42:50). Longitudinal 

motion can be treated in a mathematically identical way. 

Now consider a continuous system, a good approximation for a solid material (for example a string) 

which has many atoms (45:00). A disturbance moving down a string, upon reflection at a fixed 

endpoint, comes back inverted. The analysis for a small length of string is very similar to that for 

a bead on a string (49:45). Again, we assume tension is constant, due to low amplitude, and we 

do not consider any motion in the x direction, only y. 

1Pages in “French”, mentioned from time to time in the lectures, refer to pages in the textbook used at that 

time for 8.03: A.P. French Vibrations and Waves (1971) ISBN: 9780393099362. 

MIT OCW 8.03SC 2 Lecture Notes #7
 



The force acting on a short length of string with an angle from 

the horizontal of θ at its left end and θ + Δθ at its right end 

is (52:20): 

Fy = −T sin θ + T sin(θ +Δθ) ≈ −Tθ + T (θ +Δθ) = T Δθ 

We take the mass of the short length of string to be dm and 

Newton’s Second Law for this is written as (dm)ÿ = T Δθ, and 

if we have a mass per unit length of µ, then the mass is µΔx. 

This gives (µΔx)ÿ = T Δθ. From the geometry, for small Δx, the tangent of the angle can be 
∂y 

related to the derivative of the function describing the shape of the string tan θ = . The symbol 
∂x 

“∂” (a “partial derivative”) is used because y is a function both of position x, and of time t. When 

taking a partial derivative with respect to one of several variables, the others are held fixed. 

The forces acting at any instant of time depend on the tension in the string and the angle it is 

away from equilibrium. So in doing Newton’s Second Law, we wish to take the derivative of y 

only with respect to x, not taking into account that the string is also changing its displacement 

with time. The discussion near (54:20) involving tan θ is more complicated than it needs to be. 

Like sin θ, tan θ also reduces to θ (in radians) in the small angle approximation. Thus, we can 
∂y dθ ∂2y

write θ = and then take = . The force equation (µΔx)ÿ = T Δθ can be rewritten as 
∂x dx ∂x2
 

Δθ dθ ∂2y
 
µÿ = T ≈ T = T . 

Δx dx ∂x2
 

∂2y µ ∂2y ∂2y

To stress that ÿ reflects time change only, we write it , so we get = (56:50). (The 

∂t2 T ∂t2 ∂x2 

reference to the “18.0 whatever people” is to the MIT Math department.) 

The solution of this equation is actually very easy. Any function of the form y = f(x ± Ct) will 

solve this equation. Using the chain rule, the second derivative of y with respect to time is C2 times 

f "" (x ± Ct), the second derivative of f with respect to its argument, whereas the second derivative 

with respect to x is just f "" (x ± Ct). (Note, the argument itself is x ± Ct.) This will satisfy the  
wave equation if C = T/µ. Since T is a force with units kg·m/s2, and µ is kg/m, it is clear the 

units of C are m/s, so it is a speed (58:45). We can use v as a symbol instead of C. Then we can 
1 ∂2y ∂2y

write the wave equation as = . 
v2 ∂t2 ∂x2 

The function f(x − vt) will have the same value whenever x − vt has the 

same value. Since t always increases, this means we get the same value
 

of f whenever x has also increased to offset the greater value of vt.
 

For the opposite case, f(x+vt), x+vt must have the same value. Since t
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always increases, this means we get the same value of f whenever x has decreased to offset the 

lesser value of vt. So the − sign case corresponds to a function moving toward +x and the + sign 

case, to one moving toward −x (1:02:00). 

An important discussion starts near (1:03:20). How can one 

generate an exact negative pulse when reflecting one coming 

in? Simply holding the end fixed automatically generates the 

forces needed to make this negative pulse! This explains why 

a “mountain comes back as a valley” (1:07:30). If this force 

was not applied, meaning that the end could move up and down freely, then no inversion would 

occur (1:09:00). This is a very different boundary condition. In this case, the slope of the string 

at the end must be zero, because otherwise the massless end of the string would undergo infinite 

acceleration. The fixed and moving alternatives are referred to as “closed” and “open” ends, 

respectively (1:11:50). For an open end, reflection still occurs but without the inversion of the 

pulse. Note that the moving end case gives twice the amplitude at the time of reflection, in a sense 

the “opposite” of the amplitude being zero always for a fixed end. This is demonstrated with a set 

of coupled torsional oscillators (1:14:10). 
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