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Notes for Lecture #8: Traveling & Standing Waves
 

The last lecture covered normal modes in systems with a finite number of particles and traveling 

waves in a continuous medium. Now the two ideas converge as normal modes in continuous media 

are considered. One approach could be to take the results from N beads on a string and let N go to 

infinity. This is easy to envisage qualitatively (1:20), but for the quantitative aspect an approach 

based on traveling waves and boundary conditions will be used. A few definitions are needed. The 

wavelength λ is the distance the disturbance travels in one  
oscillation time, as it propagates with speed v = T/µ aso  

2π 
described by y = A sin (x − vt) . Note that this is a 

λ 
solution of the wave equation since any function f(x ± vt) 

is a solution. This particular function describes a periodic 

wave as opposed to just a pulse. If, for a fixed time t, one advances by a distance x in the direction 

of propagation of the wave, the disturbance will change as a sinusoid. If, instead, one sits at a 

point and lets the wave move past as time t increases, the pattern repeats after one period P (T 

was used for some other periodic motions, but here we want to retain T as the tension). Since the 

wavelength λ is the distance traversed by the wave moving at a speed v in a time of one period P 

we know that λ = vP . If ω is the oscillation rate in radians per second, the period must be given by 

P = 2π/ω and so λ = vP = 2πv/ω and ω = 2πv/λ. We can introduce the wave number k = 2π/λ 

so that ω = kv (4:30). Use of k gives a more symmetric wave equation: y(x, t) = A sin(kx − ωt). 

We now consider two identical waves propagating in opposite directions: y1(x, t) = A sin(kx − ωt) 

and y2(x, t) = A sin(kx + ωt) which we want to add. The sum of any two sine functions is the 

sine of half the sum of the arguments times the cosine of half the difference. So, the sum of these 

two waves is simply y = y1 + y2 = 2A sin(kx) cos(ωt). The importance of this result is that the 

spatial and temporal oscillations are now completely decoupled (7:45). The overall pattern does 

not move! It is called a standing wave. We now consider fixing the ends of the string, y = 0 at 

x = 0 and at x = L. At x = 0, this is automatic for sine functions. At x = L, it happens if 

kL = nπ, or kn = nπ/L, where kn denotes wavenumber for mode n. Furthermore, λn = 2π/kn 

and ωn = nπv/L. The frequency in Hz is then fn = ω/2π = nv/2L (10:30). These normal modes 

have integral numbers of half sinusoids, oscillating at the angular frequency ωn (i.e. frequency fn). 



One half wavelength between the fixed ends is called the fundamen

tal or 1st harmonic. A full wavelength is the 2nd harmonic, etc., 

and the frequencies are linearly proportional to the mode (har

monic) number, i.e. ωn = nω1 (14:10). In music, the harmonics 

are referred to as overtones. In quantum mechanics, similar waves 

play an important role and the modes are called eigenstates. Our unπx y 
general solution for the nth mode is yn = An sin cos(ωnt)

L 
(16:30). By driving at appropriate frequencies, the resonances corresponding to the normal modes 

can be easily excited, as has been demonstrated many times, and is done here for the modes on 

stretched strings. 

The same considerations apply to sound (23:30), which is a (slight) excess or decrease of pressure 

with regard to the ambient pressure, and is a longitudinal oscillation. To emphasize this, the unπx y 
variable is changed: ξn = An sin cos(ωnt). The velocity is always close to 340 m/s for sound 

L 
near ground level, and this value is used in ωn = nπv/L. If, instead of displacement, we talk about 

pressure, then the boundary conditions dictate that the pressure change is maximum at the ends unπx y 
and pn(x, t) = Pn cos cos(ωnt) (28:00). In the demo, the preferred frequency would be 803 

L 
Hz to match the MIT Oscillations and Waves class which is 8.03, but actually 2409 Hz had to be 

used. Then λ = v/f = 340/2409 ≈ 0.14 m. In the demo, the nodes (no sound) are very clear 

(34:30). The speed of sound can be extracted very accurately since f is very precisely known and 

the λ/2 distance between nodes can be easily measured (37:00). 

Energy is moved by waves despite the fact that no mass moves in the direction of the wave 

(even in a longitudinal wave the particles do not move far, they oscillate about their equilibrium 

position). We consider initially the kinetic energy (KE). In a short length of the string, for a g  2
1 2 1 ∂y 

transverse wave, there is a y velocity and this gives KE of dEkin = (dm)vy = µdx . 
2 2 ∂t

∂y ∂ 
Taking the derivative, = A sin[k(x − vt)] = −Akv cos[k(x − vt)]. So the element of KE 

∂t ∂t 

is dEkin =
1 
µA2k2 v 2 cos 2[k(x − vt)] (40:50). We obtain the KE over one whole wavelength, by 

2  λ 
2doing an integral: Ekin =

1 
µA2k2 v cos 2[k(xi − vt)]dx. The constant terms can be moved 

20  λ 
2outside the integral sign to give Ekin =

1 
µA2k2 v cos 2[k(xi − vt)]dx. The integral is λ/2 so 

2 0 
1 λ A2π2T 

Ekin = µA2k2 v 2 . With v2 = T/µ and k = 2π/λ, in one wavelength Ekin = (43:20).
2 2 λ 

Note that the energy is proportional to the amplitude squared. There is also potential energy in the 

string stretching to the oscillating shape and it turns out that the potential energy per wavelength 
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2A2π2T 
is the same as the kinetic energy. Thus, the total energy is Etrw = , where trw denotes 

λ 
“traveling wave” (45:20). A standing wave of a given amplitude is equivalent to two traveling 

A2π2T 
waves of half the amplitude going in opposite directions giving Estanding = (50:10).

λ 

In traveling waves, there is energy flow in the direction of propagation. Power needs to be put in. 
2A2π2T 1 

An energy of Etrw is injected for every oscillation, i.e. Power= . But since the period is 
λ P 

2A2π2Tv 
v/λ, we have Power= (53:30). For a traveling wave, this assumes that the power is put 

λ2 

in at one end and goes away (maybe on an infinitely long rope). Recall that in the standing wave 

demo, no energy needed to be put in once the oscillation was going. 

In the case of two connected ropes, the tension must be the same 

(55:30). If one rope has mass density µ1 and the other µ2, then 

the propagation velocities are v1 = T/µ1 and v2 = T/µ2. If 

the junction is at x = 0, with the incoming (incident) wave from 

the left, there will be a reflected wave which must be toward the 

left, and a transmitted wave toward the right (i.e. from the left 

like the incident wave). The boundary conditions mean that both y and y' must be continuous 

at the junction. The incident and reflected waves are in opposite directions but have the same 

wavelength since they are in the same medium: yi = Ai sin(ωt − k1x) and yr = Ar sin(ωt + k1x). 

The transmitted wave is in the second medium so its k is different: yt = At sin(ωt − k2x). As in all 

driven cases, the ω is the same everywhere: ω = k1v1 = k2v2 (1:00:00). At the junction (x = 0), 

the sine terms are the same for all waves, and so Ai + Ar = At. Taking the x derivative for each 

gives a common cosine and so −Aik1 + Ark1 = −Atk2. From ω = k1v1 = k2v2 we can replace k 
Ar v2 − v1 At 2v2

with v to get (Ai − Ar)v2 = Atv1. Then the ratios R = = and Tr = = 
Ai v2 + v1 Ai v1 + v2 

(1:03:30). Note that Tr is initially written on the board incorrectly but later fixed. 

To consider illustrative cases, first put µ2 = ∞ which would be a fixed end or wall. Then R = −1 

and Tr = 0, as expected. If v1 < v2, i.e. µ1 > µ2, R > 0 and Tr > 0, so what comes back is not 

inverted, and some non-inverted wave also gets through. This is somewhat like a free-end case. 

In the case that the two strings are identical, we expect nothing to happen, and indeed from the 

formulas, R = 0 and Tr = 1 (1:08:00). Leading to the demo, try v1 = 2v2. Then R = −1/3 and 

Tr = 2/3. Also, the wavelength will change in the transmitted wave. Both features are shown in 

a demo. A free end (open end) can be modeled by µ2 ≈ 0, i.e. v2 goes to infinity. Then R = 1, 

Tr ≈ 2 (1:15:50). The consequences of this seeming violation of energy conservation are left for 

the students to ponder. 
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