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Problem 4.1 (French 7-12)1 – Traveling pulse

a) Since the pulse is traveling to the right, the piece of string

on the right side of the peak is “rising” and the piece on

the left is “falling.” The transverse velocity of the peak is

zero but it has the maximum acceleration (see the figure).

b) The pulse shape is shown below. We can model the

pulse with a Gaussian function. That is, the pulse resembles
2

y(η) = Ae−αη where η = x−vt, A = 0.1 m and α = 4 m−2.

The graph of the pulse shape is actually this function. 2 1.5 1 0.5 0 0.5 1 1.5 2
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The transverse velocity is then

2

=
∂t

−2Aαηe−αη
∂η 2

= 2Aαvηe−αη We can find the maximum
∂t

transverse velocity at t = 0 by requiring that

∂2y
0 =

∂t2

∣∣∣∣
t=0

= 2Aαv2e−αη
2 (

2αx2
max − 1

)
⇒ 0 = 2αx2

max − 1 ⇒ xmax =

√
1

2α

Hence, the maximum transverse velocity at t = 0 is

∂y
vy|max =

∂t

∣∣∣∣
x=xmax

= 2Av

√
α
e−1/2 ≈ 6.86 m/s

2

c) The mass density of the string is µ = 1/50 kg/m. The tension in the string is T = µv2 ≈ 32 N.

d) Any wave traveling in the negative x direction with a speed v can be described as

y(x, t) = f(η) = f(kx + ωt) where f(η) is the shape of the wave, k is the wave number and

ω is the angular frequency. For sinusoidal waves: y(x, t) = A sin(kx + ωt + φ), where A is the

amplitude of the wave and φ is the phase of the sinusoid. Furthermore, a wavelength of 5 m

implies k = 2π/λ = 0.4π m−1. Since this wave is traveling on a string, it must obey the relation

ω = kv = 16π s−1. Therefore, the equation describing the wave is

y(x, t) = (0.2 m) sin
((

0.4π m−1
)
x+

(
16π s−1

)
t+ φ

)
,

1The notation “French” indicates where this problem is located in one of the textbooks used for 8.03 in 2004:

French, A. P. Vibrations and Waves. The M.I.T. Introductory Physics Series. Cambridge, MA: Massachusetts

Institute of Technology, 1971. ISBN-10: 0393099369; ISBN-13: 9780393099362.



where φ is unknown since the phase of the wave was unspecified.

Problem 4.2 (French 7-13) – Traveling pulse

a) A sketch of y(x, 0) is shown.

b) Remember that any pulse or wave traveling in the

positive x-direction can be expressed as y(ωt−kx), for

k ≥ 0 and that its speed of propagation is v = ω/k.

Then, letting z = ωt − kx and expressing y(x, t) as
b3

a function of z, y(z) = . Hence, z = 2x
b2 + z2

− ut.
Therefore, for positive values of u, the pulse travels in

the positive x direction with a speed v = u/2. 5b 4b 3b 2b b 0 b 2b 3b 4b 5b
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c) vy(t = 0) =

∂t

∣∣∣∣
t=0

=
2b3u(2x− ut)

(b2 + (2x− ut)2)2

∣∣∣∣
t=0

=
4b3xu

( b2 + 4x2)2
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Problem 4.3 – Pulse reflection at a boundary

a) The propagation speed in string 1 is v1 =
√
T/µ1 = 10

√√ 2 m/s ≈ 14 m/s and in string 2,

v2 = T/µ2 = 10
√

2/3 m/s ≈ 8 m/s. Then, the reflection and transmission coefficients are

R =
v2 − v1

√
=

v1 + v2

3− 3√
3 + 3

≈ −1

4
T =

2v2

v1 + v2

=
2
√

3√
3 + 3

≈ 3

4

b) This graph shows the incident, reflected and

transmitted waves when the pulse peak arrives at

the junction (x = 0). Note that the reflected

pulse is upside down and flipped right to left.

Also, the transmitted pulse is narrower. Keep in

mind that only the dashed black line is physical.

The other lines (in red, green and blue) are there

only for illustrative purposes.
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This graph shows the total deformation of the

string when the peak is at x = 0.
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c) The shape of the string at time:

t = (5 m)/v1 = 0.357 s is shown in this figure.
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d) The sharp cusps of the pulse are unphysical because it leads to an infinite potential energy of
dU

the string. Recall that the potential energy density of a string is
dx

=
1

2
T
∂y

. Since the pulse is
∂x

not smooth at the cusp the slope is infinite. Therefore, the potential energy of the string is infinite.

Alternatively, we could argue that, at any point in the string, the forces must cancel because each

point has an infinitesimally small mass. We need vanishing forces in the presence of a vanishing

mass so the acceleration remains finite. The cusps in the string cause an infinite acceleration since

the forces at those points do not cancel.

Problem 4.4 – Boundary conditions on a string

a) The sketch on the right shows the forces acting on the hoop. Apply-

ing Newton’s second law gives F = ma = ∆mÿ = −T sin θ+Ffriction.
∂y

Assuming that oscillations are small, ∆mÿ = −T
∂x
− b∂y . Since the

∂t
∂y

mass of the hoop is negligible, −T
∂x
− b∂y = 0

∂t
∂y⇒
∂x

= − b
T

∂y

∂t
at the hoop for all times.

F

T

friction

Velocity

b) Let’s take the superposition of an incident wave and a reflected wave

y(x, t) = f︸ (x− vt)︷︷ ︸
Incident, known.

+ g(x+ vt)︸ ︷︷ .

Reflected, unknown.

We now use the boundary condition at the hoop to solve for g(x+ vt). The respective derivatives
∂y

︸
are

∂x
= f ′(x − vt) + g′(x + vt) and

∂y
= v (−f ′(x− vt) + g′(x+ vt)) . If the hoop is at x = 0,

∂t
bv

then f ′(−vt) + g′(vt) =
T

(f ′(−vt)− g′(+vt)) so g′(vt) =
bv/T − 1

f ′(
bv/T + 1

−vt).
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Letting η = vt and∫ integrating with respect to η,

g′(η) dη =

∫
bv/T − 1 bv

f ′(
bv/T + 1

−η) dη g(η) =
− T

(
bv + T

−1)f(−η)

T
g(η) =

− bv
f( η

T + bv
− ).

Note that the integration constant must be zero for the limiting cases discussed in part (c) to hold.

c) For b = 0, the hoop behaves as a free end. Our result gives g(η) = f(−η), which is correct

since the wave is reflected without flipping. For b→∞, the hoop behaves as a clamped end. Our

result gives g(η) = −f(−η), which is correct since the wave is reflected flipped over. Note that for

the special case when b = T/v, g(η) = 0. Hence, there is no reflected wave. This is known as a

matched load.

Problem 4.5 – Boundary conditions in a pipe
∂2p

The wave equation for the over-pressure p(z, t) inside a pipe is
∂z2

=
ρ0

κ

∂2p
. The solution to this

∂t2
equation is p(z, t) = [A cos kz +B sin kz] cosωt. Since the pipe is open at both ends (remember, p

is over-pressure), 0 = p(0, t) = A cosωt⇒ A = 0 and 0 = p(L, t) = B sin kz cosωt⇒ sin kz = 0
nπ⇒ k = where n = 1, 2, 3 . . . We can obtain the dispersion relation by inserting p(z, t) into the
L

wave equation for the system. The relevant derivatives are

∂p ∂p
= kB cos kz cosωt

∂z
=

∂t
−ωB sin kz sinωt

∂2p ∂2

=
∂z2

−k2 p
B sin kz cosωt = 2

t2
−ω B sin kz cosωt

∂

The wave equation then reduces to

−k2B sin kz cosωt = −ω2B sin kz cosωt ⇒ ω =

√
κ

ρ0

k ⇒ ωn = n
π

L

√
κ

ρ0

Finally, the initial condition determines kn and B. The initial condition is
L

p0 = p(L/2, 0) = B sin k
2

= B sin
nπ ⇒ B = ±p0 if n = 1, 3, 5, 7 . . .
2

Hence, n must be an odd integer. Otherwise, B would equal zero and p(z, t) = 0 which is indeed
nπ

a trivial solution. Finally, the wave number is kn = where n = 1, 3, 5, 7 . . . where B = +p0 for
L

n = 1, 5, 9 . . . and B = −p0 for n = 3, 7, 11 . . .

Problem 4.6 – Normal modes of discrete vs. continuous systems

a) The most general solution for a standing wave in a string is:

y(x, t) = A cos (kx+ φx) cos (wt+ φt) . The two boundary conditions are:
π

0 = y(0, t) = A cosφx ⇒ φx = and 0 = y(L, t) = A sin kL
2

⇒ kL = nπ.

Hence, the n-th normal mode of the string is:

nπ
yn(x, t) = An sin

(
L
x
)

cos (ωnt+ φt) , where ωn = nω1 =
nπv

L
=

nπ

L

√
T

µ
= nπ

√
T

ML
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ωn
b) The general formula for the frequency of the n-th mode is νn =

n
=

2π 2

√
T

. The five
ML

lowest normal modes are

ν1 = 1
2

√
T
ML

≡ ν0, ν2 =
√

T = 2ν0,ML

ν3 = 3
2

√
T
ML

= 3ν0, ν4 = 2
√

T = 4ν0,ML

ν5 = 5
2

√
T = 5ν0.ML

c) Using Eq. (5-25) on page 141 of French ωn = 2ω0 sin

[
nπ

2(N + 1)

]
⇒ νn =

ω0

π
sin

(
nπ

.
2(N + 1)

)
The fundamental frequency is ω0 =

√
T
M
5
L
6

=

√
30T

ML
=
√

120ν0. The first five frequencies are

then (N = 5)
√

ν1 = 120
π

sin
(
π
12
ν0

)
= 0.9ν0, ν2 =

√
120
π

sin
(
πν06

)
= 1.7ν0,√

ν3 = 120
π

sin
(
π
4
ν0

)
= 2.5ν0, ν4 =

√
120
π

sin
(
πν03

)
= 3.0ν0,√

ν5 = 120
π

sin
(

5πν012

)
= 3.5ν0.

d) The following figures show the first 5 normal modes for the string and the beads.

n=1 

n=3 

n=2 

n=4 

n=5 

string 

beads 

e) Since N = 5 is still not N � 1, the normal mode frequencies and shapes are not identical.
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Problem 4.7 — Piano galore

a) The frequency of the n-th mode of a string is νn = ωn/2π = n
√
T/2L

√
µ. Differentiating

dνn
with respect to T gives

dT
=

n

4L

√
1 n

=
Tµ

(
2L

√
T

µ

)
1

2T
=

1
νn. We know that n = 1,

2T

T = 250 N, νC5 = 512 Hz and dν = 0.5 Hz, so dT = (0.5)(500)/512 N ≈ 0.5 N.

b) Pianos have 88 keys. Many notes have two strings and many have three; some have only one

string. A Steinway grand piano has a total of 216 strings. This translates into F = 216× 250 N ≈
5.4× 104 N. This is huge; it’s about the weight of a mass of 54 thousand kg (54 tons)!!

c) The G5 will excite the second harmonic of C4 and you will hear G5. The fundamental of G5

will not excite G6. However, the second harmonic of G5 will excite G6 and you will hear G6.

d) A note which is a higher harmonic of G5 will be excited (eg. G6, D7, G7, B7). Also a note below

G b
5 which has G5 as one of its higher harmonics will be excited (e.g. G4, C4, G3, E3, C3, etc.).

e) No string is perfectly flexible and perfectly continuous. Furthermore, the restoring force on

the string is linear only to a first approximation, so it is not possible for the strings to possess

harmonics in perfect multiples of each other. Very shortly we will learn that the velocity is a

function of frequency√(or λ); a phenomenon called dispersion. So far, we always assumed ideal

strings for which v = T/µ (independent of ν).

There is another reason for the difference in tone between G th
5 and the 6 harmonic of C3: a piano

which is “in tune” is not tuned according to our scientific scale. The octaves are tuned in perfect

multiples of 2 (frequency) but all other intervals are slightly altered. The perfect fifth is not so

perfect after all. For more information see Waves (Berkeley Physics Course Vol. 3), by Crawford,

problem 2.6 pp 91-93.

f) They had better go away since the beats are the result of a superposition of sinusoidals of the

two nodes.

Problem 4.8 – Holes in woodwind instruments

a) With holes C and B closed, the pipe is 37 cm long, open at both ends. Therefore,
v

λ = 2L = 74 cm ⇒ ν = = 446 Hz
λ

b) If the holes are large enough this is a pipe of length 18.5 cm, open at both ends, so ν = 892 Hz.

c) With only hole B closed, the effective length of the pipe is AC so λ = 2(27.7 cm) = 55.4 cm.

Hence, ν = 600 Hz.

d) With neither B or C closed, L is now approximately 18 cm, thus λ = 2(18.5 cm) = 37 cm.

Hence, ν = 892 Hz.

Problem 4.9 — Pianos can talk back

a) The sounds that you make are a superposition of different frequencies. Each string inside the

piano will respond to its harmonics. Hence, the sound of your voice will be broken down into
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frequencies and selected frequencies will be played back by the piano. In this way, the piano is

performing a Fourier analysis of your sound. The piano need not be in tune, it needs only to

possess enough components to make your sound recognizable.

b) The ratios of the harmonic frequencies of the strings will not be exactly 1 : 2 : 3 . . . because

the piano is not tuned that way (see problem 4.7 above). In addition, the oscillations will not be

in phase because of the difference in travel times of your sound to the strings (about 1 meter in

3 msec). In 3 msec the 330 Hz string will perform one complete oscillation; the 1000 Hz will make

3 oscillations, etc.

c) Apparently, phase in unimportant.

d) We cannot explain this. But it is the way our brains work. Perhaps evolution did not discover

any survival value in keeping the phase.

MIT OCW 8.03SC 7 Problem Set #4 Solutions



MIT OpenCourseWare
http://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

