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Notes for Lecture #13: Deriving Electromagnetic Waves 

The discovery of electromagnetic radiation (in the form of electromagnetic or EM waves) was 

one of the highlights of 19th century physics. Mechanical and sound waves, which we have already 

studied, form a good basis for the study of electromagnetic waves. These include radio waves, radar 

(microwaves), infrared radiation, visible light, UV, X-rays, and gamma rays. In these, electric and 

magnetic fields are intertwined in such a way as to permit propagation, even in the “empty” space 

of a vacuum. The study of EM waves is based on the time-dependent Maxwell’s equations (1:30). 

The versions used to study EM wave propagation are for vacuum, in which there is no charge or 

current density. Therefore, Maxwell’s equations are written here first in general and then with all 

charge and current terms set to zero. 

Gauss’ Law, A E = 0, relates the divergence of the electric field to the charge density. The · A = 
ρ
 
t0
 

divergence of the magnetic field BA is always zero since there are no magnetic monopoles: A · A B = 0. 
∂BA AAA ∂EA ∂EA

Faraday’s Law is  ×A EA = − and Amp`  × A = A J + t0µ0 .ere’s Law is A B µ0 = t0µ0 Note 
∂t ∂t ∂t 

that the original form of Ampère’s Law had only the first term. It was later “corrected” by the 

addition of the second term, the so-called “displacement current”, introduced by Maxwell. It is 

this time derivative of the electric field which allows the electric and magnetic fields to couple 

to form EM waves in a vacuum. Within these equations, the “del” vector operator (3:00) is 
∂ ∂ ∂A = x̂+ ŷ+ ẑ. Applied to a scalar function φ, this operator produces the gradient vector 
∂x ∂y ∂z
 
∂φ ∂φ ∂φ
A ˆ ˆ ẑ.  function can be applied to a vector in two ways. The “divergence” φ = x+ y + The A
∂x ∂y ∂z 

is found using the scalar product (dot product) resulting in the scalar: (4:00) 

∂Ax ∂Ay ∂AzA · AA = + + 
∂x ∂y ∂z 

The “curl” of a vector function AA is the vector cross product which can be written in several ways: 

A × AA =

        

        
=


x̂ ŷ ẑ 
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An identity for “curl of a curl” is given without proof:  × (A =  (A  · AA  × AA) A  · AA) − (A  ) AA 

where the final term may be written with A  =  2, which is called the Laplacian (7:00). The · A
∂2 AA ∂2 AA ∂2 AA 

Laplacaian is a scalar function which when applied to a vector AA gives  2AA = + + 
∂x2 ∂y2 ∂z2 



which has nine terms (3 derivatives of 3 components). The 3 terms in the x-component are  ∂2Ax ∂2Ax ∂2Ax\2AE = + + so that the complete Laplacian of vector function AE consists of
x ∂x2 ∂y2 ∂z2   

∂2Ax ∂2Ax ∂2Ax 
+ + x̂ and similar terms for ŷ and ẑ. 

∂x2 ∂y2 ∂z2


∂
 
Taking the curl of both sides of Faradays Law gives (9:15) E \× E (E B) where the\× (E E) = − \× E

∂t
order of time and spatial derivatives has been interchanged on the right hand side. Applying the 

∂ 
above identity for taking two curls would give \E (\ ·E EE) −\2 E = − \× BE ) but the first termE (E

∂t
on the left hand side is zero due to Gauss’ Law in the absence of charge, so that simply 

E ∂ 
(E B) ⇒ − 

∂ \× E E\× (\×E EE ) = − \× E (E B) = −\2 E
∂t ∂t

We can replace the left side of the equation using Ampère’s Law, E B = c0µ0\× E
∂ EE 

which allows 
∂t 

elimination of BE , resulting in −c0µ0 
∂2 EE 

= −\2 EE. Eliminating the minus signs and expanding
∂t2 

the Laplacian gives the form (11:10) 

∂2 E ∂2 E ∂2 E ∂2 EE E E E 
c0µ0 = + + 

∂t2 ∂x2 ∂y2 ∂z2 

This equation was Maxwell’s great victory and changed the entire outlook of science. It is a wave 

equation for the electric field in vacuum. It must be possible to create electric fields which move 
√ 

in vacuum with the speed c = 1/ c0µ0. It was the genius of Maxwell in adding the displacement 

current term to Ampère’s Law that allowed this insight. Similar reasoning through taking the curl 

of the curl of BE brings a wave equation for the magnetic field in similar form: 

∂2 EB \2 EB = µ0c0 
∂t2 

The two fields are coupled by the set of Maxwell’s equations so that the wave equation for one 

field requires a wave equation to apply to the other (13:00). These are three-dimensional wave 

equations and there are interdependent oscillations in the electric and magnetic fields. The speed 
√ 

of propagation follows directly from Maxwell’s equations and that “speed of light” c = 1/ c0µ0 is 

numerically very close to 3.00 × 108 m/s. It is remarkable that the two constants which combine 

to give this value can be determined from entirely static experiments in electrostatics (Coulomb’s 

Law) and magnetostatics (Ampère’s Law). They are the permittivity of free space (c0 = 8.8×10−12 

in SI units) and the permeability of free space (µ0 = 4π × 10−7 in SI units) (14:30). The speed 

of light was well known by the time of Maxwell, having been measured in 1676 by Rœmer, who 

brilliantly used the eclipse times of the moons of Jupiter (these times vary due to the changing 
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distance of Jupiter from Earth, adding an apparent delay to the timing of events) to derive the 

speed of light as about 2.4×108 m/s. The value was low since the scale of the solar system was not 

very accurately known at the time. In 1728, James Bradley used the technique of stellar aberration 

to get 3.01×108 m/s. In 1849, Foucault and Fizeau used rotating mirrors and disks to measure the 

speed of light in the laboratory as within 5% of 3 × 108 m/s. Shortly thereafter, Maxwell, knowing 

this measured value, could affirm that light was an electromagnetic phenomenon. In 1865, he laid 

the foundation of the electromagnetic theory of light. 

Now we move to finding solutions to the wave equation (16:30). If the electric field points only 

along the x̂ direction (but is defined as a traveling wave at all points in space, and propagates in 

the +ẑ direction), then Ex = E0x cos(ωt − kz) with the other components Ey = 0 and Ez = 0. 
∂2EB

In the wave equation t0µ0 = \2EB which could have nine terms in the Laplacian, only one is 
∂t2 

nonzero, and there is only one component Ex for the time derivative to operate on, which leaves 
∂2Ex ∂2Ex

the one-dimensional wave equation (19:00) = µ0t0 . For Faraday’s Law, the curl of EB
∂z2 ∂t2 

∂Ex ∂ BB 
similarly has only one term if evaluated as above, so we get \× EB = ŷ = − . 

∂z ∂t 

So what is BB? It is clear that it must be in the ŷ direction. Doing the derivative of Ex gives 
∂ BB 

+kE0x sin(ωt − kz)ŷ = − . Integrating in time (apart from a possible constant background
∂t 

kE0xmagnetic field which is a constant of integration), we have BB = cos(ωt − kz)ŷ so the one 
ω 

E0x component of the magnetic field may be expressed as (22:45) By = cos(ωt−kz). The magnetic 
c 

field associated with a specific electric field has a magnitude (in SI units) which is c times smaller 

than that of the electric field. In addition, the arguments of the cosine functions are the same, so 

that the fields are in phase. The magnetic field is perpendicular to the electric field, and both are 

perpendicular to the direction of propagation. 

It is instructive to visualize a single cycle (wave

length) of an electromagnetic wave (24:50). 

Choosing a particular but arbitrary moment in 

time, the sinusoidal variation along the z spatial 

coordinate can be plotted. There is no variation 

in the other coordinates: the vectors shown are 

present at all values of x and y. More generally, the EB vectors amplitude varies as a sine or cosine 

of z and is drawn as a smooth red curve for one cycle. Note that this is only a piece of a wave 

although one could well imagine that a finite pulse much as shown is possible. Individual sample 

vectors can be drawn at regular intervals in z and those for the electric field are parallel to the x 
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axis, with overall amplitude E0x (26:00). There must be an associated BA vector in the y direction, 

with amplitude B0y . The entire pattern moves in the +z direction with the speed of light, c. 

The electric and magnetic field move together: they are “married” or “stuck together.” Along 

planes perpendicular to the direction of propagation, the values of EA and BA are identical at all 

values of x and y, since no dependence on these variables is present. This is why they are called 

plane waves: this may not be a completely realistic situation but it does solve the wave equations. 

At any point in one of these planes, the values of EA and BA change with time as the wave goes by, 

becoming positive and negative in unison, reaching their respective maximal values and zero at the 

same time. These equations describe traveling EM waves, standing waves will be dealt with later. 

Important properties of traveling EM waves include(29:20): 

A•	 E and BA ⊥ direction of propagation 

•	 EA ⊥ BA

•	 EA × BA is in the direction of propagation
 

A
•	 E and BA are in phase
 

|EA |
• | BA | = (in SI units) 
c 

If EA points only in one direction, x̂ here, then the wave is referred to as linearly polarized. It is 

also possible to have an EA field along the ŷ direction, which would imply a BA field along −x̂, so 

that EA × BA is still in the direction of propagation (ẑ). Any linear superposition of solutions is still 

a solution, so it is possible to add two such solutions, and even change the phase between them: 

EA = E0x cos(ωt − kz)x̂ + E0y cos(ωt − kz + δ)ŷ 

where δ is some phase angle (32:15). If we choose δ = 0, we still get linearly polarized radiation but 

with a different polarization direction. When the x component of EA reaches its maximum amplitude 

E0x , the amplitude in the y direction also reaches its maximum E0y . The total amplitude at that u 
E2 + E2	 Atime is	 Etot = . Seeing such a wave coming toward you, you would see the E field0x 0y 

rapidly varying back and forth at an angle in the x-y plane. It would be linearly polarized, no 

longer in the x or y direction but in an in-between direction (34:00). 

It is also possible to make the phase difference 90◦, i.e. δ = π/2, 

which gives rise to something interesting. When Ex has its max

imum value E0x , the component in the y direction is 0 since it is 

90◦ out of phase. After 1/4 period, Ey is maximal in amplitude 

(but negative), while Ex is 0. One more 1/4 period, and Ex is at 

its most negative while Ey is again 0, and finally after 3/4 period, 
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Ey is maximal and Ex again 0. There is never a time when |EA | is zero, but it rotates around in 

an ellipse. This is called elliptically polarized radiation. This is simply a solution of Maxwell’s 

equations with one component in the x direction and the other in the y direction, offset by 90o . 

Any other value of phase can also be chosen. If E0x = E0y , with an offset of 90o as discussed here, 

the path is a circle and we refer to circularly polarized radiation. If δ = π 
2 , then it goes clockwise, 

and if δ = −π 
2 , it goes counterclockwise (36:15). 

It is straightforward to calculate the BA -field of any polarized wave using the rules listed previously. 

Simply calculate BA separately for the x and y components of EA and then add the results. 

Now, consider the general three-dimensional case of a wave. With the position vector in three 

dimensions, Ar = xx̂ + yŷ + zẑ, the general EM wave’s electric field is EA (Ar, t) = EA0 cos(ωt − Ak · Ar) 
where Ak = kxx̂+kyŷ+kz ẑ (38:45). The vector Ak is in the direction of propagation, and its magnitude  
is |Ak| = 2π/λ = k2 + k2 + k2 (recall that λ is the wavelength). Now we look at the geometric x y z 

meaning of Ak · Ar in the argument of the cosine. This is most easily visualized in two dimensions 

and then it should be clear how it extends to three dimen

sions. On the line perpendicular to Ak, Ak · Ar is constant. At 

any point in the x-y plane Ak · Ar = |Ak||Ar| cos θ where θ is the 

angle between Ak and Ar (41:30). In this case, r cos θ is the 

length of the line from the origin to the intersection of the 

projection of Ak with the perpendicular line containing Ar. For 

any Ar which is on that line, this is true. Consider now the 

time t = 0, and with a wave propagating such that the EA field 

along this perpendicular line is a maximum (and pointing out 

of the page). This is a “crest” or “mountain” in EA . 

More specifically, consider the case that Ak · Ar = 4π. Consider another line through the origin and 

parallel to the first one. On this line, Ar is perpendicular to Ak everywhere, so Ak · Ar = 0 and we 

can also consider the perpendicular line which is between these two at Ak · Ar = 2π. These lines, 

parallel to each other but perpendicular to Ak, all show where EA has a maximum pointing out of 

the page (43:30). The spacing of these lines is the wavelength λ, and the whole thing moves ahead 

(in the direction of Ak) at the speed c. Extending this thinking to three dimensions, Ak · Ar = const. 

would form not lines, but planes, perpendicular to Ak. In each such plane, the EA vector is the 

same everywhere. Whether the radiation is linearly polarized, circularly polarized, or elliptically 

polarized is irrelevant, EA , and threfore BA , are everywhere the same in each plane, and the whole 

pattern moves forward at the speed of light, in the direction of Ak. In the first case, which for 

simplicity was written Ex = E0x cos(ωt − kz), Ak · Ar became simply kz. So in this example, kx = 0, 
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ky = 0 and only kz  = 0 (in fact kz = k). The wavelength is then λ = 2π/k in both the simple case 

and in three dimensions (46:30). 

We can now look at two successive crests of an electromag

netic wave relative to the x-y plane. These are perpendicular 

to the vector Ak, separated by a distance λ, and traveling in 

the direction of Ak at speed c. The distance from crest to crest 

along the y direction (here one of the crests happens to go 

through the origin) is Ly, which is much larger than λ. The 

analogous distance along the x axis is Lx, also larger than λ. 

If there is propagation in three dimensions, there may also 

be a similar Lz. When the wave has moved a distance λ in 

the Ak direction, the crest at the origin will now be at the 

position originally occupied by the second crest. However, 
in the same time, the crest has progressed in the y direction by a distance Ly. Since Ly > λ, 

the speed with which the crest moves in the y direction (vpy, the phase velocity) is bigger than 
Ly k 

c: vpy = c = c > c where k2 = kx 
2 + ky 

2 + kz 
2 . This speed of propagation of the crests along 

λ ky 

the y axis is equal to c in the case of propagation directly along y but can be far larger. (49:25). 

Although ky = 2π/Ly looks like the relation of a wave vector to a wavelength, it is better not to 

think of Ly as a wavelength, but rather that there is only one wavelength λ associated with the 
k k 

wave. Similarly, vpx = c and vpz = c. Consider the motion actually being along the x axis. 
kx kz 

Then the lines of constant phase would be vertical and the phase velocity along y would go to 

infinity. There is no violation of Einstein’s theory of special relativity since no energy would flow 

at that speed (51:30). 

An analogy is made with water waves traveling at speed v with a wavelength λ and hitting a 

shoreline at two points A and B separated by a distance Lx. The difference in arrival time for 

successive crests of the wave at either point A or B is the same, T = λ/v. It is only the difference 

in arrival time of the same wave at points A and B that depends on the angle of the waves relative 

to the shoreline. However, no water is moving with the (potentially much larger) speed given by 

this latter time difference. 

Similarly, in a demonstration during the previous lecture, two aluminum plates separated by a 

distance a had electromagnetic radiation moving in the direction z parallel to the plates (55:00). 

It was concluded that the phase velocity component in the z direction was vpz = ω/kz > c, a result 

that could have caused some unrest. Furthermore, if the frequency approached the cutoff, this 

phase velocity approached infinity. Now we know that there is, in fact, no problem since no energy 
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flows at that very high speed for reasons similar to that for waves hitting a beach. The energy flow 

is at the group speed, which is vgr = dω/dkz < c. It is perfectly acceptable to have phase velocities 

greater than c, but no mass or energy can travel at that speed. 

Electromagnetic waves are shown to be linearly polarized using an antenna consisting of a pair 

of wires driven at a frequency of 80 MHz (57:30). This broadcasts EM waves due to electrons 

accelerating along the antenna. The wavelength of such radiation is 3.75 m. A similar receiving 

antenna has a light bulb in the middle which lights up if current flows along it. By orienting 

the antennas relative to one another, a signal can be seen if the receiving antenna is parallel to 

the transmitting antenna, but not if they are perpendicular. Off to the side, it is necessary to 

turn the antenna to have it perpendicular to the direction of propagation. If one comes too close, 

more energy is received, to the point that the light bulb can be burned out (1:01:00). A similar 

demonstration is done using radar at 10 GHz with a 3 cm wavelength. An oscilloscope shows both 

the transmitted and received signals. The output is modulated with a triangular shape at about 550 

Hz which is audible and contains high harmonics with an unpleasantly sharp tone. Interestingly, 

a person’s hand absorbs such radiation. (1:03:45). 

There are various ways to turn unpolarized light into linearly polarized light. The cheapest way 

is to buy a linear polarizer. These were invented by Edwin Land to change unpolarized light into 

100% polarized light while reducing the intensity. An ideal polarizer reduces the light intensity by a 

factor of two. But what is unpolarized light? If light from, for example, a desk lamp comes straight 

toward you, it will contain short periods of one plane polarization followed by many others with 

different random orientations of polarization such that all possible angles are present. The plastic 

material invented by Land allows only one direction of EA field polarization to emerge. When a wave 

with amplitude E0 at some random angle θ comes in, only the component parallel to the preferred 

direction (E0 cos θ) passes through (1:06:45). However, the intensity of light is proportional to 

the square of the electric field. The Poynting vector giving the energy transport is proportional 

to EA × BA , but since BA is, in turn, proportional to EA , this is proportional to E2 . For one incident 

direction, the intensity coming out is proportional to cos2 θ. This is known as Malus’ Law. For 

unpolarized light, all angles appear randomly so what comes out is proportional to the average 

of cos2 θ which is 1/2. So, such a polarizer turns incoming unpolarized light into 100% polarized 

light parallel to the preferred direction, with an intensity half (50%) that of the incoming light. In 

practice there is some additional absorption, so that one gets maybe 40% transmission (1:08:30). 

Placing a first polarizer, and then a second with its preferred direction at 90o to that of the first, 

is called making “crossed polarizers”. Even without absorption, no light could emerge from this 

configuration. As a demonstration, a sheet of linear polarizer placed on an overhead projector 
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allows through only linearly polarized light, although it is not polarized after interacting with the 

screen (reflecting). We cannot detect such polarization with our eyes (1:10:00), although some 

animals can, and some (such as bees) can even detect the direction. With some training, humans 

can detect this to some extent. A second polarizer placed in the aligned direction reduces light a 

bit more, due to absorption in the sheets. However, if the top one is rotated so they are crossed, all 

light is blocked. Strangely, placing a third linear polarizer in between the first two allows some light 

to get through (1:103:00). In this case, the middle polarizer allows light at an angle θ and with 

intensity cos2 θ to pass through. This light then hits the second polarizer at an angle 90 − θ and is 

therefore not totally absorbed. The lecture ends with a demonstration using small polarizers given 

to the students. When Prof. Lewin holds up a linear polarizer in front of his face, the students can 

rotate their polarizers to make him appear or disappear. This effect also works in reverse, making 

the small polarizer in front of the students’ eyes appear clear or dark to Prof. Lewin. 
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