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Notes for Lecture #17: Wave Guides & Resonant Cavities 

The discussion of electromagnetic wave propagation can be expanded from the previous one-

dimensional analysis to higher dimensions. Normal modes were already discussed in higher di

mensions but not in the context of waves. Much as in that case, the transition from one dimension 

to three dimensions is straightforward. The scalar wavenumber becomes a wave vector, represented 

in terms of its components along (x̂, y,̂ ẑ). The wave vector is in the direction of propagation of the 

wave in three dimensions kk = kxx̂+ kyŷ+ kz ẑ (2:00). The wavelength, λ, remains λ = 2π/k, with  
k the magnitude of the wave vector (still called the wavenumber), i.e. k = |kk| = k2 + k2 + k2 .x y z 

The speed of propagation for light in vacuum (nondispersive) is c and the phase velocity equation 

v = ω/k gives ω = kc. 

Consider EM waves polarized in the y direction and propagating in the z direction between two 

plates which are very large in these two directions and located at x = 0 and x = a. (“large” 

usually means with respect to the wavelength.) Recall the boundary condition that at the surface 

of a conductor the parallel component of the electric field must be zero, so Ey = 0 at both plates. 

The k vector cannot have a y component but could have a component in the x direction (5:00), 

so one can regard the wave as bouncing between the plates much like a beam of light between 

two parallel mirrors. Planes of constant phase are perpendicular to kk. By drawing out the wave 

fronts, it is clear that when an advance of one wavelength is made along the direction of kk, a larger 

distance Lz is moved along the z direction. The wave phase advances in the z direction in the 

ratio Lz/λ faster than in the actual direction of propagation. An analogy was made previously to 

waves coming into a shore where the edge of a breaking wave can move very fast parallel to the 

shoreline compared to the speed with which the wave crests are moving. Taking the direct ratio 

of Lz/λ, or the inverse ratio of k’s, the phase velocity in the z direction is larger than the speed of 

light: vpz = L
λ 
z c = 

k
k 
z 
c > c. Conversely, the rate of progress of the overall wave, zigzagging down 

the slot (the group velocity) is slower: vgz = (kz/k)c < c (10:00). 

∂2Ey ∂2Ey ∂2Ey
Recall that the wave equation for the electric field is \2Ek = + = t0µ0 . The 

∂x2 ∂z2 ∂t2 

solution in this particular case will be a standing wave in the x direction and a traveling wave in 

+ k2 2the z direction, Ek (x, z, t) = E0y cos(ωt − kzz) sin(kxx)ŷ. The dispersion relation is ω2 = (kx 
2 

z )c

and c2 = 1/(t0µ0). The boundary conditions at the plates require that kx = nπ/a where n is 1, 

2, 3... (14:00) The electric field amplitude has the shape of a standing wave across the slot. Thef  2nπ 
resulting k vector is kk = (nπ/a)x̂ + kz ẑ and so: ω = kc = c + kz 

2 . (16:50) 
a



The phase velocity along z was deduced previously from geometry, vpz = ω/kz = kc/kz > c, and 

the group velocity, dω/dk, is also that found from the geometry, i.e. vgz = (kz/k)c < c. The lowest 

frequency possible is ωc = cπ/a corresponding to a wavelength λ = 2a. Propagation can occur at 

any frequency above this cutoff (but with n = 1 corresponding to a half-wave standing wave in x) 

(20:15) . The dispersion curve between kz and ω (with kx = π/a for the half wave) is such that 

ω/k (the phase velocity) is always greater than c while dω/dk (group velocity) is always smaller 

than c. A description (referred to as a gedanken or thought experiment) of the behavior of the 

system as the frequency is decreased from some large value follows (24:00). The cases of n = 2... 

give dispersion curves at higher frequencies (27:30). It is possible for a single frequency to occur 

for two different modes with the same k but different kx, i.e. different standing wavelength in x. 

If the polarization direction is changed, the boundary conditions, which depend on the normal 

component, no longer restrict things and any frequency can propagate. This effect could even act 

to separate polarization components (33:00). A demonstration is done using a fixed frequency of 

1010 Hz (λ ∼ 3 cm) but varying the size of the gap to vary the cutoff point. Propagation ceases at 

the expected gap size of 1.5 cm. With polarization perpendicular to the plates, the size of the gap 

determines the intensity but there is no cutoff (37:00). 

Now consider a closed box with conducting walls so that Ex is 0 at y=0 and b and also at z = 0 

and c. We can immediately write Ex = E0x sin(kyy) sin(kzz) cos(ωt) with ky = mπ/b, kz = nπ/c 

where m = 1, 2, 3... and n = 1, 2, 3..., kk = kyŷ + kz ẑ (43:20). This can be shown to be a 

solution to the wave equation and the dispersion relation is simply ω2 = (ky 
2 + kz 

2)c2 = k2c2 or   
ω2 2 2 2 
m,n = (mπ/b) + (nπ/c) c . It is unfortunate that one of the lengths of the box was labeled “c” 

like the speed of light but this should not be a problem in context (47:00). To meet the boundary 

conditions, the frequencies are quantized. In three dimensions, there are no longer nodal lines but 

rather nodal surfaces but other aspects are similar to vibrations of membranes (with nodal lines) 

or even to strings (nodes or nodal points). 

Similarly, Ey = 0 at x = 0 and a and also at z = 0 and c. The solutions are very similar to those  2 2 for Ex, and we find ωl,n = (lπ/a) + (nπ/c) c2, another infinite family of values (51:30). The 

general solution for linearly polarized radiation in any direction (including also a z component)   2 2 2has the dispersion relation ωl,m,n = (lπ/a) + (mπ/b) + (nπ/c) c2 . 

Sound, which is a longitudinal wave with alternating small amounts of excess and diminished air 

pressure, has different boundary conditions (54:00). Also, polarization does not come into play. 

Particles at the walls cannot move through the walls so there can be no flow there, but the wall pres

sure can change in response to sound waves. Thus we should have maximum pressure changes, i.e. 

antinodes at the walls. This boundary condition, antinodes instead of nodes at the walls, changes 
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the sine functions in the previous solution to cosines: p = p0 cos(kxx) cos(kyy) cos(kzz) cos(ωt). 

For antinodes at the boundaries, kx = lπ/a, ky = mπ/b, and kx = nπ/c. The dispersion relation 

is ω2 = k2v2 with v the speed of sound, and as usual λ = 2π/k. The full dispersion relation 
2 2 2ω2 = (lπ/a) + (mπ/b) + (nπ/c) v2 . The usual unit for sound frequencies is Hz (57:45):l,m,n � �2 � �22 2 2 2ωl,m,n v lπ mπ nπ v l m n 

fl,m,n = = + + = + + 
2π 2π a b c 2 a b c 

Based on this, the resonance frequencies of sound in a square box can be predicted. A demonstration 

is done with a box of 30.0 × 39.85 × 50.0 cm, all uncertain to 0.1 cm. These are the lengths a, b, 

and c which correspond to the indices l, m, n, respectively in the table below. The speed of sound, 

vs ≈ 344 m/s, is proportional to the square root of the temperature (in K) and, therefore, accurate 

to about 1%. From this the predicted results can be tabulated in order of increasing frequency as 

the indices are varied, and then compared to what is actually observed (1:02:00). 

l m n Hz predicted Hz observed 

0 0 1 344 344 

0 1 0 432 434 

0 1 1 552 548 

1 0 0 573 575 

1 0 1 669 670 

0 0 2 688 691 

1 1 0 718 721 

1 1 1 796 792 

0 1 2 812 812 

All observed resonant frequencies are within 1% of the prediction. A plot is then presented 

(1:08:00) showing the resonance spectrum as amplitudes as a function of frequency. Predicting 

the expected amplitudes is actually pretty hard. 

The final demo shows the response to a transient 1.5 s pulse of 581 Hz injected into the box 

(1:11:00). This interferes with the normal mode solution, likely the 575 Hz resonance, to cause 

beats. The transient oscillation is 6 Hz as predicted by the 581-575 Hz frequency difference. When 

the driver is turned off, the system oscillates at 27 Hz, which seems to be the 575 Hz normal mode 

beating with the 548 Hz normal mode. 
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