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Problem 6.1 — (Bekefi & Barrett 3.3)1 Electromagnetic plane waves

~a) First note that B = Byŷ. Hence, Bx = Bz = 0. We now proceed by applying Maxwell’s
~ ~equations to B and E. Gauss’ Law for electricity states that

∂E∇~ · ~ x
E = 0

∂x
+
∂Ey
∂y

+
∂Ez

= 0 E0xf
′kx + E0yf

′ky + E0zf
′kz = 0

∂z

~ ~E0xkx + E0yky + E0zkz = 0 ⇒ E · k = 0.
~ ~Similarly, Gauss’ Law for magnetism gives B · k = 0. Ampérè’s Law says that

1∇~ × ~B =
c2
∂ ~E

∂t

∂By

∂x
ẑ − ∂By

∂z
x̂ =

1

c2
∂ ~E

∂t
kxB0yf

′ẑ − kzB0yf
′x̂ =

1

c2
∂ ~E

.
∂t

Note here that Ey = 0 since the left side of the equation does not have a component along ŷ.

Integrating the former equation with respect to t gives
c2B~ 0

E = y

ω
(kxf ẑ − kzfx̂) + ~C(~r) = B0y

c2 ~f · (kxẑ − kzx̂) + C(~r),
ω

~ ~ ~ ~ ~where C(~r) is a constant of integration. You can quickly check that ∇ · E = 0 implies ∇ · C = 0.
~ ~Also, we can use Faraday’s Law to show that ∇×C = 0. The details of the algebraic steps are left

∇~ · ~ ∇~ × ~ ~as an exercise to the reader. It turns out that C = 0 and C = 0 imply C = 0. Then, using
c

ω = |k| ~c, E = B0y |k|
f · (kxẑ − kzx̂) = B0yc

(
kx
|k|
f ẑ − kz ~fx̂ and so E =

k
− ˆc k× ~B. Consequently,

| ~ | | ~ | ˆ ˆc × ˆ ~ ~ ~ ~
| |

E = B and E B = k. Thus, E k and

)
⊥ E ⊥ B. Note that the direction of propagation of

ˆ ~the wave, k, equals the direction of the Poynting vector S.

~ ~ ~ ~ ~b) If kz = 0 then k = kx and E = Ez ẑ since k ⊥ B ⊥ E. Using the equation derived in the
~ ~previous E = − ˆ ~section ck ×B = cB0zf

(
k · ~r − ωt+ φ

)
~z.

Problem 6.2 — (Bekefi & Barrett 3.5) Maxwell in action

~a) Since B = B0 sin(ωt− ˆ ~kz)x̂, k = ẑ. Using E = − ˆck
~

× ~B,

E = −cB0 sin(ωt− kz)ŷ.
~ ~b) The sketch shows the values of E and B at the origin

and the wire loop. The EMF around the loop is:

E =

∮
dΦ~E · ~ B

dl = −
dt

= − d

dt

∫
S

~B · d~S.

x

y

z
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~We choose the surface of integration S to be the flat square bounded by the loop. Then, dS is

normal to that surface. Since we will call positive E ˆif it is in the direction QPORQ, then S = −x̂
by the right-hand rule. Furthermore, since the electromagnetic field is a plane wave, this problem

has translational symmetry. Then, for convenience, we will choose the coordinate system such that

1The notation “Bekefi & Barrett” indicates where this problem is located in one of the textbooks used in 8.03

in 2004: Bekefi, George, and Alan H. Barrett Electromagnetic Vibrations, Waves, and Radiation. Cambridge, MA:

MIT Press, 1977. ISBN: 9780262520478.



the origin is at point O of the loop. Then,

dE = −
∫ λ ∫ λ λ λ

B0 sin(ωt− kz)x̂ · (x̂ dydz) =
0

−B0ω cos(ωt k
dt 0 0

− z) dydz.
0

λ

∫ ∫
Using k = 2π/λ, E = −λB0ω

2π
sin

(
ωt− 2π

z=λ

z = 0. Alternatively, we can calculate the
λ

in

)∣∣∣∣
z=0

tegral using the electric field of the electromagnetic wave. Notice that the path of integration is

QPORQ.
P

E ~ ~ ~ ~=

∮
E · dl =

∫
E

Q

· dl︸ ︷︷ ︸
=0

+

∫ O

P

~E · ~dl +

∫ R

O

~E · ~dl︸ ︷︷
∫ Q Q

~ ~+ E E
R

· dl =

∫ O

~
P

· ~dl +

∫
~E

R

· ~dl.

=0

Since the loop has sides of length λ, the electric field along PO equals the electric field along
~ ~RQ. Mathematically, E(zPO) = E0 sin(ωt − kzPO)ŷ and

︸
E(zRQ) = E0 sin(ωt∫ ~

− kzRQ)ŷ. Since
~zRQ = zPO +∫λ, E(zRQ) = E0 sin(ωt − kzPO − 2π)ŷ = E0 sin(ωt kzPO)ŷ = E(zPO). Hence,

O ~ ~ Q ~ ~
−

E dl = E dl. Therefore, = 0 along the loop.
P
· −

R
· E

c) Rotating the loop about the z-axis leaves E = 0; the argument is similar to the one in part (a).

Similarly, rotating the loop about the x-axis still leaves E = 0. However, rotating the loop about

the y-axis changes the value of E . We can calculate the inclination of the plane which maximizes
~dBE . The EMF in the loop is defined as E = −

∫
S

~d
dt
· S. Hence, maximizing |E| implies maximizing∣∣∣∮ ~dB

S dt
· d~S

∣∣∣. If the loop is flat against the YZ plane then the net flux of ∂ ~B through the plane of
∂t

the loop is zero (positive flux cancels cancels an equal amount of negative flux). We wish that only

positive (or only negative) flux crosses the plane of the loop. Hence, the loop must be oriented so
~that its projected area onto the YZ plane is half of its area. In other words, A · x̂ = A/2, where

~A = An,ˆ A is the area of the loop and n̂ is a unit vector normal to the surface of the loop. Then,
~A · x̂ = A cos θ = A/2 and θ = cos−1(1/2) = π/3 = 60◦. Hence, the EMF is

dE = −
dt

∫
S

~B · d~S = − d λ

dt

∫ cosπ/3

0

∫ λ

B0 sin(ωt
0

− kz) dydz

λ
= −B0ωλ

π
sin

(
ωt− 2π

=

λ

) z

z

∣ λ cosπ/3

= 2λB0c cosωt.
z=0

So the maximum EMF is E0 = 2λB0c = 2E0.

∣
~

∣
∂B

∣
Alternatively, we can use Faraday’s Law E = −

∫
S

~
∂t
· dS =∮

~E · ~dl. Then, maximizing |E| implies maximizing | ~E
L
· ~dl|.

~The sketch shows the E field (blue lines) and the wire lo

∮
op (thick

black line) oriented at 60◦ with respect to the YZ plane.∮ Note
~that this orientation of the loop gives the maximum E

L
· ~dl. yz

x

dΦ
Note that whether you calculate − B ~using only the magnetic field or E the

dt
· ~dl using only

electric field of the EM wave you will find the same result. You should not

and magnetic fields of an EM wave as being independent. Instead, you should

∮
think of the electric

remember that the
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B-field causes the E-field and the E-field causes the B-field. They are “one and the same.”

Problem 6.3: Polarized radiation
E~ 0

a) For angle α = π/4 from the +y direction Eπ/4 = √ cos(ωt
2

− kx)(ŷ + ẑ)

1~Bπ/4 =
ω
k × ~E =

E0

c
√ E

x̂
2
× (ŷ + ẑ) cos(ωt− 0

kx) =
c
√ cos(ωt

2
− kx)(ẑ − ŷ)

E− ~ 0
For angle α = π/4 from the +y direction E−π/4 = √ cos(ωt

2
− kx)(ŷ − ẑ)

1~B−π/4 =
ω
k × ~E =

E0

c
√

2
x̂× (ŷ − ẑ) cos(ωt− kx) =

E0

c
√ cos(ωt− kx)(ŷ + ẑ)

2

~b) One solution is E = E0[cos(ωt− kx)ŷ + cos(ωt− kx+ π/2)ẑ]
1~B =
ω
k × ~E =

E0
x̂

c
× [cos(ωt− kx)ŷ + cos(ωt− kx+ π/2)ẑ]

E0
= [cos(ωt kx)ẑ cos(ωt kx+ π/2)ŷ]

c
− − −

This is usually called left-handed circular polarization, but is called right-handed by Bekefi and
~Barrett. The second solution is E = E0[cos(ωt− kx)ŷ + cos(ωt− kx− π/2)ẑ]

1~B =
E~k

ω
× 0
E = x̂

c
× [cos(ωt− kx)ŷ + cos(ωt− kx− π/2)ẑ]

E0
= [cos(ωt− kx)ẑ − cos(ωt− kx

c
− π/2)ŷ]

This is usually called right-handed, but is called left-handed by Bekefi and Barrett.

Problem 6.4 — Linear polarizers – Malus’ law + absorption

The amplitude of the E-field of an EM wave transmitted through a linear polarizer is ET = E cos θ,

where ET and E are the E-field amplitudes of the transmitted and incident waves, respectively,

and θ is the angle between the polarization of the incident wave and the direction of polarization

of the polarizer. Thus, the intensity is reduced by cos2 θ. Since 〈cos2 θ〉 = 1/2, half of unpolarized

light passes through a perfect polarizer, hence the designation HN50.

Furthermore, since the polarizers are HN30, the transmitted intensity through one polarizer is

I = (0.5 × 0.7)Iu, where Iu is the intensity of the unpolarized light. This I is I0 in our problem.

The intensity through two polarizers is I = I0(0.7 cos2 θ12), where θ12 is the angle between the

polarization axes of the first and second polarizers. Similarly, the intensity through three polarizers

is I = I0(0.7 cos2 θ12)(0.7 cos2 θ23), where θ23 is the angle between the polarization axes of the second

and the third polarizers. Let’s examine each case individually:

F: The unpolarized light passes through only one polarizer, so I = (0.5× 0.7)Iu = I0.

G: The light passes through two polarizers at right angles, so I = I0(0.7 cos2 π/2) = 0.

H: Two polarizers: θ12 = π/6. Hence, I = I0(0.7 cos2 π/6) = 0.525I0.

K: Three polarizers: θ12 = π/6 and θ 2
23 = π/3. I = I0(0.7 cos π/6)(0.7 cos2 π/3) ≈ 0.368I0.

L: Note that this case is physically identical to H so I = 0.525I0.
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M: Two polarizers: θ12 = π/3. Hence, I = I0(0.7 cos2 π/3) = 1.4I0.

N: The light passes through only one polarizer, so I = I0.

Problem 6.5: (Bekefi & Barrett 4-1) Radiation from an accelerated charge

~a is the component of the acceleration of the charge in⊥

a direction perpendicular to the position vector of the ob-

server. θ is the angle between the direction of acceleration
r

and the position vector of the observer. t′ = t−
c

~E(~r, t) =
−q~a (t′)⊥ r̂~Vm−1 B(~r, t) =
4πε0rc2

E
c
× (~r, t) Wm−2

1~S = ~E
µ0

× ~B Wm−2

E(~r, t) =
−qa(t′) sin θ

4πε0rc2
|~S(~r, t)| = q2a2(t′) sin2 θ

∫ 16π2ε0r2c3
π 2

2 q a2(t′)
t) = ~

0

|~P ( S(r, t)|2πr sin θdθ =
6πε0c3

Watt x̂

~r

~E

~B

ŷ

ẑ

~a

~a⊥

θ

a) Arrival time at all the three observers A,B and C is tarrival = R/c. The direction of the electric

field at the point of observation is anti-parallel to the component of the acceleration perpendicular

to the position vector. The direction of the magnetic field is the cross product of the position

vector with the electric field. The figure below shows the directions to the 3 observers.

• Observer A
qa(t′)~EA =

4πε0Rc2
sin θA(~rA × x̂) θA =

π

2

=
−qa(t′)

ẑ
4πε0Rc2

• Observer B
qa(t′)~EB =

4πε0Rc2
sin θB(~rB × x̂) θB =

π

6

=
1 qa(t′)

2 4πε0Rc2
(

√
3

2
ŷ − 1

ẑ)
2

• Observer C
qa(t′)~EC = sin θC(~rC

4πε0Rc2
× x̂) θC = 0

= 0

x

y

z

A

B

C

q

300

b) As |B| = |E|/c, hence the relative strengths of the magnetic field B are the same as the relative

strengths of the electric field E in Part(a) at the three observation points. The arrival time of the

magnetic field at the three observers A,B and C is tarrival = R/c. The direction of the induced

magnetic field at the three points is in the −x̂ direction.
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Problem 6.6: (Bekefi & Barrett 4-2) Radiation from an accelerated charge

a) A point charge +q from time interval

t = t0 to t = t0 + ∆t feels a force per-

pendicular to its trajectory, and moves

along a new trajectory without chang-

ing its speed |w~ |. Since the angle ∆α is

small, the acceleration along the x axis

is negligible and does not effect the an-

swer. The only significant acceleration

of the point charge is along the −y di-

rection.
∆Vy

~a =
w sin ∆α

ŷ =
∆t ∆t

ŷ ' w
∆α

ŷ
∆t

∆α
a = a⊥ y sin θ = w

∆t
sin θ

x̂

ŷ

w

w

θ

∆α

a

P1

P2

E⊥

where a is the component of acceleration perpendicular to the position vector of the distant point⊥

P1. Then the electric field at point P1 is anti-parallel to a and is oriented as shown in the figure.⊥
q

E =
a⊥

4πε0r c2
(r̂P1 × ẑ) =

q

4πε0r

v

c2
∆α

sin θ(cos θx̂+ sin θŷ)
∆t

So at a distant point P1 the electric field caused by the acceleration has the direction (cos θx̂+sin θŷ)

where θ is the angle shown in the figure.

b) The radiation intensity ∝ | ~E |2 ∝ sin2 θ. So it⊥

is most intense in the x− z plane.

c) The least intense direction is along the y axis.

The figure shows the radial plot of variation of

intensity with angle θ from along the +y direction.

~E(~r, t)~d) B(~r, t) = r̂ ×
c

E⇒ ~B ' ⊥

c
∝ 1

so, the amplitude decreases by
r

a factor of 2.

e)

q2a2∆t
∆Eradiated = P∆t =

q2w2

=
6πε0c3 6πε0c3

(
∆α

∆t

)2

∆t
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