Massachusetts Institute of Technology OpenCourseWare

8.03SC

Fall 2012

Source

 θ_{ς}

Problem Set #7 Solutions

Problem 7.1: Speed checked by radar

a) $\lambda = c/f \Rightarrow f = 3 \times 10^8/3 \times 10^{-2} = 10^{10} \text{ Hz}$

b) Frequency received by moving car: $f' \simeq f(1+\beta)$ where $\beta = v/c$ is positive for approaching car. Frequency received by police car: $f'' \simeq f'(1+\beta) \simeq f(1+\beta)^2 \simeq f(1+2\beta)$

Problem 7.2: Can't you hear the whistle blowing

a) The original Doppler expression for sound is $f' = \left(\frac{v + v_D \cos \theta_D}{v - v_S \cos \theta_S}\right) f$ where v, v_S and v_D are the speeds of sound, the source and the detector with respect to the medium, respectively. θ_D and θ_S are angles as shown in the figure. Since $v_S/v \sim 20/340 \sim 0.06 \ll 1$ and $v_D = 0$, the Doppler expression can thus be simplified as:

$$f' = \left(\frac{v}{v - v_S \cos \theta_S}\right) f \approx \left(1 + \frac{v_S}{v} \cos \theta_S\right) f$$

As the train passes the detector, the angle θ_S goes from 0 to π .

Far away approaching $\theta \sim 0$, so $f' \approx (1+0.059)f$ $f'_{far \ approach} = 1059 \ Hz$ Far away receding $\theta \sim \pi$, so $f' \approx (1-0.059)f$ $f'_{far \ recede} = (1-0.059)f = 941 \ Hz$ Closest approach $\theta = \pi/2$ $(\cos \theta = 0!)$ $f'_{t=0} = (1-0.059 \cos \pi/2)f = f = 1000 \ Hz$ **b)** At $t = -10 \ \text{sec}$, $\cos \theta = 200/100\sqrt{5} = 0.89$ $f'_{t=-10} = (1+0.059 \times 0.89)f = 1053 \ Hz$ At $t = -5 \ \text{sec}$, $\cos \theta = 100/100\sqrt{2} = 0.71$ $f'_{t=-5} = (1+0.059 \times 0.71)f = 1042 \ Hz$

c) The figure shows the plot of heard frequency versus time for the train whistle.

 θ_D

Problem 7.3: Our expanding universe - simplified

a)
$$s = R\theta$$
 so $\theta = s/R = \frac{s + \Delta s}{R + \Delta R}$. Dividing by Δt , $s\left(\frac{\Delta R}{\Delta t}\right) = R\frac{\Delta s}{\Delta t} \Rightarrow \left(\frac{\Delta s}{\Delta t}\right) = \left[\frac{1}{R}\frac{\Delta R}{\Delta t}\right]s$.

Frequency f' Hz →

b) Hubble's Law: v = Hd, here v is the recession velocity of a galaxy, and d is the distance between us and that galaxy. For the balloon universe, ds/dt = v, and s = d. Thus $H = (1/R)(\Delta R/\Delta t)$. The units for H are 1/time. $\Delta R/\Delta t$ is the expansion rate of the balloon.

c) If $\Delta s/\Delta t = l$, the recession velocity at the horizon equals the maximum velocity of the ants.

For constant $\Delta R/\Delta t$, this occurs at a distance $s_{max} = Rl \left(\frac{\Delta R}{\Delta t}\right)^{-1}$ Note: R is the radius of the universe (Here, the radius of the balloon).

d) Multiply the equation given in the problem
$$\left(\frac{v^2}{2} = \frac{GM}{R} + constant\right)$$
 by $2/R^2$ and introduce $V = \Delta R/\Delta t$ and $\rho = 3M/4\pi R^3$. Then $\left(\frac{1}{R}\frac{\Delta R}{\Delta t}\right)^2 = \frac{8\pi G\rho}{3} + \frac{2(constant)}{R^2}$

e) For a flat universe, the constant= 0, so $H^2 = \left(\frac{1}{R}\frac{\Delta R}{\Delta t}\right)^2 = \frac{8\pi G\rho}{3}$

$$\Rightarrow \quad \rho_0 = \left(\frac{3}{8\pi G}\right) H_0^2 \sim 10^{-26} \text{ kg/m}^3 \sim 10^{-29} \text{ g/cm}^3 \text{ for } H_0 = 70 \text{ km/sec per Mpc.}$$

f) $\left(\frac{1}{R}\frac{\Delta R}{\Delta t}\right)^2 = \frac{2MG}{R^3} + \frac{2(constant)}{R^2}$. As before, the constant=0, so $\Delta R/\Delta t = \sqrt{2MG/R}$ and $\Delta t = \Delta R\sqrt{R/2MG}$. Integrating gives $t = \frac{2R^{3/2}}{3\sqrt{2MG}} \implies R(t) \propto t^{2/3}$.

Now, since $H = \Delta R/(R\Delta t)$ and $R \propto t^{2/3}$, one can find an expression for H in terms of t. Let $R = ct^{2/3}$, then $\frac{\Delta R}{\Delta t} = \frac{2}{3}ct^{-1/3}$ $H = \frac{1}{ct^{2/3}}\left(\frac{2}{3}ct^{-1/3}\right) = \frac{2}{3t}$ The age of the universe is now equal to $t_0 = 2/3H_0 \sim 9.3 \times 10^9$ years.

g) Combining equations shows that H is inversely proportional to $R^{3/2}$ (no time dependence!). Since R was smaller in the past, H must have been larger.

h) *H* becomes negative if $\Delta R/\Delta t$ becomes negative. This can occur for a closed universe that is collapsing. Thus, the redshifted galaxies and QSO's would become blueshifted.

Problem 7.4 – Doppler shifts of EM radiation \Rightarrow a black-hole X-ray binary

The figure shows the binary system at two times.

a) Since the two orbits are circular, the speed of the two masses are $v_1 = 2\pi r_1/T$ and $v_2 = 2\pi r_2/T$. Applying Newton's second law to m_1 ,

$$F = m_1 a$$

$$\frac{Gm_1m_2}{(r_1 + r_2)^2} = m_1 \frac{v_1^2}{r_1} = m_1 \frac{1}{r_1} \left(2\pi \frac{r_1}{T}\right)^2 = m_1 \frac{4\pi^2 r_1}{T^2}$$

$$\Rightarrow T^2 = \frac{4\pi^2 (r_1 + r_2)^3}{G(m_1 + m_2)}.$$

Note that we could have applied Newton's law to m_2 and gotten the same result.

and 2 (m_1 moving away from the observer for a red shift), respectively. The doppler shift is given by $\frac{\lambda'}{\lambda} = \frac{1 - \beta \cos \theta}{\sqrt{1 - \beta^2}}$, where $\beta = v/c$, λ' and λ are the wavelengths in the reference frames of the

observer and the star, respectively. Here, $\theta = 0$. Hence, $\frac{\lambda'}{\lambda} = \sqrt{\frac{1-\beta}{1+\beta}} \approx 1-\beta \Rightarrow \beta \approx 1-\frac{\lambda'}{\lambda}$. Since $\lambda = (499.75 \text{ nm} + 500.25 \text{ nm})/2 = 500 \text{ nm}$, $\beta \approx 1 - \frac{499.75}{500} = 5 \times 10^{-4}$. Thus, v = 150 km/s. Finally, the period of the spectrum shift of the donor equals its orbital period, i.e, T = 5.6 days.

c) Using
$$v_1 = 2\pi r_1/T$$
, $r_1 \approx 1.16 \times 10^{10}$ m.

d) Let $x = r_2/r_1$. Then, eliminating r_2 in the equation derived in part (a), $T^2 = \frac{4\pi^2 r_1^3 (x+1)^3}{G(m_1+m_2)}$ From the definition of center of mass, $m_1r_1 = m_2r_2$. Then, $m_2 = m_1/x$. Eliminating m_2 ,

 $T^2 = \frac{4\pi^2 r_1^3 (x+1)^3}{Gm_1(1+1/x)}$. Substituting for the known values of G, T, r_1 and m_1 , we arrive at the following equation $15.32 = x^3 + 2x^2 + x$. The only real solution to this equation is x = 1.87. Hence, $r_2 = xr_1 = 2.17 \times 10^{10}$ m.

e) $m_2 = m_1/x \approx 16 M_{sun} \approx 3.19 \times 10^{31}$ kg.

Problem 7.5 (Bekefi & Barrett 5.3)¹ – Transmission line a)

i) Capacitance

In order to find the capacitance of the system, we need to assume that one wire holds a linear charge density μ and the other one holds $-\mu$. Consider only the positively charged wire, then we can use Gauss' law to find the electric field outside the wire. We can imagine a cylindrical gaussian surface of radius r and length l concentric to the wire with

flat end pieces. By symmetry, the electric field is normal to the curved surface of the cylinder but it is parallel to the flat ends. The area of the curved portion of the Gaussian surface is $2\pi rl$. Then, applying Gauss' Law,

$$\oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_{0}} \qquad \underbrace{\int_{\text{sides}} \vec{E} \cdot d\vec{A}}_{=0} + \int_{\text{curved}} \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_{0}}$$
$$E2\pi rl = \frac{l\mu}{\epsilon_{0}} \qquad \Rightarrow E = \frac{\mu}{2\pi r\epsilon_{0}},$$

where E is the electric field magnitude for $r \ge a$. The potential difference between the wire

¹'The notation "Bekefi & Barrett" indicates where this problem is located in one of the textbooks used in 8.03 in 2004: Bekefi, George, and Alan H. Barrett *Electromagnetic Vibrations, Waves, and Radiation*. Cambridge, MA: MIT Press, 1977. ISBN: 9780262520478.

and a distance *b* away is $V' = \int_{a}^{b} \vec{E} \cdot d\vec{r} = \int_{a}^{b} \frac{\mu}{2\pi\epsilon_{0}r} dr = \frac{\mu}{2\pi\epsilon_{0}} \ln\left(\frac{b}{a}\right)$. Due to the symmetry of the two wires, the electric potential between the wires is twice the potential due to one wire. Hence, the capacitance per unit length is $C_{0} = \frac{\mu}{V} = \frac{\mu}{2V'} = \frac{\pi\epsilon_{0}}{\ln(b/a)}$. Notice that C_{0} and ϵ_{0} have the same units, i.e. F/m.

ii) Inductance

Let's assume that each wire carries a current I in opposite directions. Recall

$$\oint_{L} \vec{B} \cdot d\vec{r} = \mu_0 I_0 + \frac{1}{c^2} \frac{\partial \Phi_E}{\partial t}$$

The integral is over a closed path L. If we attach any surface with boundary L then I_0 is the current penetrating that surface and Φ_E is the electric flux through that surface. Consider the magnetic field due to one wire only and a circular Amperian loop of radius r concentric to the wire.

Since the current is constant, the E-field is constant so $\partial \Phi_E / \partial t = 0$. By symmetry, the magnetic field \vec{B} is constant around the loop. Hence,

$$\oint_{L} \vec{B} \cdot d\vec{r} = 2\pi r B \quad \Rightarrow B = \frac{\mu_0 I}{2\pi r} \quad \text{for } a \le r \le b.$$

Consider a rectangular surface of length l and width b, as shown in the figure. Then, the magnetic flux through that surface due to the magnetic field from only one wire is

$$\phi_B = \int_S \vec{B} \cdot d\vec{A} = l \int_a^b \frac{\mu_0 I}{2\pi r} dr = \frac{l\mu_0}{2\pi} \ln\left(\frac{b}{a}\right) I$$

If we now add the second wire into the picture, the magnetic

flux doubles. Hence, $\Phi_B = \frac{l\mu_0 I}{\pi} \ln\left(\frac{b}{a}\right)$. Inductance is defined as $L = \Phi_B/I$. Hence, $L_0 = \frac{\Phi_B}{I} \frac{1}{l} = \frac{\mu_0}{\pi} \ln\left(\frac{b}{a}\right)$. Notice that L_0 and μ_0 have the same units, i.e. H/m. **b**) $v = \frac{1}{\sqrt{L_0 C_0}} = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c$ **c**) $Z_0 = \sqrt{\frac{L_0}{C_0}} = \frac{\ln(b/a)}{\pi} \sqrt{\frac{\mu_0}{\epsilon_0}}$

d) $C_0 \approx 11 \text{ pF/m.}$ $L_0 \approx 1 \ \mu\text{H/m.}$ $Z_0 \approx 302 \ \Omega$.

Problem 7.6 – Coaxial cable

a) By convention, the current of the reflected wave is negative. Also, remember that the reflected wave travels in the opposite direction to the transmitted wave, so the wavenumber k flips its sign. Using V = IZ, $I(z,t) = \frac{V_i}{Z_0}e^{j(\omega t - kz)} - \frac{V_r}{Z_0}e^{j(\omega t + kz)}$

b) Since the resistor and the capacitor are in series, the total impedance is the sum of their

MIT OCW 8.03SC

impedances: $Z_L = R - \frac{j}{\omega C} = R + \frac{1}{j\omega C}$. **c)** $V(0,t) = (V_i + V_r)e^{j\omega t}$ $I(0,t) = \frac{1}{Z_0}(V_i - V_r)e^{j\omega t}$ The boundary conditions are $V(0,t) = V_L$ $I(0,t) = I_L$ Then, using the result derived in part (b), $Z_L = \frac{V_L}{I_L} = \frac{V(0,t)}{I(0,t)} = Z_0 \frac{V_i + V_r}{V_i - V_r}$. Solving for V_r gives $V_r = V_i \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{(R - Z_0) - j/\omega C}{(R + Z_0) - j/\omega C}$ **d)** Yes, our expression for V_r/V_i is consistent with the general expression.

e) If $R = Z_0$, $V_r = V_i \frac{-j/\omega C}{2Z_0 - j/\omega C}$. Then, the magnitude and phase of V_r are

$$|V_r| = \frac{|V_i|}{\sqrt{1 + (2Z_0\omega C)^2}} \quad \tan \phi(V_r) = -2Z_0\omega C.$$

Problem 7.7 (Bekefi & Barrett 5.4) – Rectangular waveguide

We are given $E_y = E_{0y} \sin(k_x x) \cos(k_y y) \cos(\omega t - k_z z)$. However, we are not told anything about E_x or E_z . We cannot assume that $E_x = E_z = 0$. Instead, we use Maxwell's equations to find the components of \vec{E} . Since the wave propagates in the z-direction, $E_z = 0$. Recall

$$\vec{\nabla} \cdot \vec{E} = 0 \quad \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = 0 \quad \Rightarrow \frac{\partial E_x}{\partial x} = E_{0_y} k_y \sin(k_x x) \sin(k_y y) \cos(\omega t - k_z z)$$

So, $E_x = -E_{0_y} \frac{k_y}{k_x} \cos(k_x x) \sin(k_y y) \cos(\omega t - k_z z)$ We then have $\vec{E} = E_x \hat{x} + E_y \hat{y}$

a) The y-component of the wave equation gives $\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2}$ $k_x^2 + k_y^2 + k_z^2 = \frac{1}{c^2} \omega^2 \quad \Rightarrow \omega = c \sqrt{k_x^2 + k_y^2 + k_z^2}.$

We encourage you to check that the x-component of the wave equation gives the same result.

b) The parallel component of the electric field must vanish at the walls, i.e.
$$E_{\parallel}(x=0) = E_{\parallel}(x=a) = 0$$
. $E_y(x=a) = E_{0_y} \sin(k_x a) \cos(k_y y) \cos(\omega t - k_z z) = 0$

MIT OCW 8.03SC

 $\sin(k_x a) = 0 \quad \Rightarrow k_x = \frac{m\pi}{a} \text{ for integers } m \ge 0.$

c) $E_x(y=b) = -E_{0_y} \frac{k_y}{k_x} \cos(k_x x) \sin(k_y b) \cos(\omega t - k_z z) = 0$ $\sin(k_y b) = 0 \Rightarrow k_y = \frac{n\pi}{b}$ for integers $n \ge 0$. There is an additional constraint on the integers m and n. If m = n = 0 then we have the trivial solution $\vec{E} = 0$. Hence, we restrict m and n such that either m = 0 or n = 0 but not both at the same time.

d) Combining the results from the previous parts,
$$\omega = c\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + k_z^2}$$

 $k_z = \frac{\omega}{c}\sqrt{1 - \left(\frac{m\pi c}{\omega a}\right)^2 - \left(\frac{n\pi c}{\omega b}\right)^2}$ Let $\omega_{m,n} = \pi c\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$. Then, $k_z c = \sqrt{\omega^2 - \omega_c^2}$.
Since $a > b$, the restriction $\omega^2 - \omega_c^2 \ge 0$ implies that the lowest frequency ω for which propagation is possible is $\omega = \omega_{1,0}$.

Note that there is no set of discrete values of ω that can propagate through the waveguide. The problem is very different from resonance frequencies. Here, **all** values $\omega \geq \omega_{1,0}$ can propagate.

The phase and group velocities are

$$v_{p_{z}} = \frac{\omega_{z}}{k_{z}} = \frac{c}{\sqrt{1 - (\omega_{c}/\omega)^{2}}} \qquad v_{g_{z}} = \frac{d\omega}{dk_{z}} = \frac{c^{2}2k_{z}}{2c\sqrt{\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2} + k_{z}^{2}}} = \frac{c^{2}k_{z}}{\omega} = \frac{c^{2}}{v_{p_{z}}}$$

The limiting values are

$$\begin{split} \omega \to \infty &\Rightarrow k_z \to \infty \quad v_{p_y} \to c \quad v_{g_y} \to c \\ \omega \to \omega_c &\Rightarrow k_z \to 0 \quad v_{p_y} \to \infty \quad v_{g_y} \to 0. \end{split}$$

Notice that $v_{p_z} \ge c$ and $v_{g_z} \le c$. The group velocity-and not the phase velocity-must be less or equal than the speed of light. Notice also that here $v_{p_z}v_{g_z} = c^2$.

We can graphically display the values of ω for various values of m and n. Recall that there is no solution for m = n = 0. Since a > b, $\omega_{1,0} < \omega_{0,1}$. Thus the curve for m = 1 and n = 0 lies below the one for m = 0 and n = 1.

Problem 7.8 (Bekefi & Barrett 5.7) – Resonance cavity

We are given $\vec{E} = E_0 \sin(k_x x) \sin(k_y y) \sin(\omega t) \hat{z}$. Since the cavity is a conductor, the tangential component of the electric field must vanish at the walls, i.e.

 $E_z(x=0) = E_z(x=a) = E_z(y=0) = E_z(y=a) = 0$. Hence, $k_x = n\pi/a$, $k_y = m\pi/a$ and $k_z = 0$.

The z-component of the wave equation gives

$$\begin{aligned} \frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} &= \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2} \\ k_x^2 + k_y^2 &= \frac{1}{c^2} \omega^2 \quad \Rightarrow \quad \omega_{m,n} = \frac{\pi c}{a} \sqrt{n^2 + m^2}, \end{aligned}$$

where m and n are integers such that $m \ge 1$ and $n \ge 1$.

a) The first solution is n = m = 1. Then, $\omega_1 = \pi c \sqrt{2}/a$ so $\lambda_1 = \sqrt{2}a$.

b) n = 2 and m = 1 or n = 1 and m = 2. Then, $\omega_2 = \pi c \sqrt{5}/a$ so $\lambda_2 = 2a/\sqrt{5}$.

Problem 7.9 – Radiation pressure

In case of absoption, the radiation pressure is S/c, where S is the magnitude of the Poynting vector (W/m²). In case of reflection, the pressure is 2S/c. Thus, the force on the mirror is 2SA/c, where A is the cross-sectional area of the laser beam, SA = 30 kW. Thus, the force is $2(3 \times 10^3)/(3 \times 10^8) = 2 \times 10^{-4}$ N. From the figure, Newton's law gives

$$T\sin\theta \approx mg\frac{x}{L} \approx 2 \times 10^{-4}.$$

Hence, x = 2 mm.

8.03SC Physics III: Vibrations and Waves Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.