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Problem 9.1: (Bekefi & Barrett 8.1)1 Thin film interference

The glass is too thick to produce “thin film inter-

ference”. We will therefore only concentrate on

the air gap. The phase difference between a and
4πd

b after ‘joining’ at c is δ =
λ1

n2
cos r + π. For

n1
constructive interference, the condition is that

δ = 2mπ (m = 1, 2, ...). In case of normal in-

cidence (cos r = 1), the equation can be modified
4dn2

to: λ1m =
(2m− 1)n1

λ2 =
n1
λ1

n2

⇒ λ2 = 4d

for m = 1. d = λ2/4 = 1 × 10−7 m where

λ2 = 4× 10−7 m = 100 nm.
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This answer could have been ‘guessed’ without this elaborate calculation. If d = λ2/4 the extra

distance traveled is λ2/2. In addition, there will be a phase difference of π! At D, light reflects off
~a less dense medium (namely air) (n2 < n1) so there is no sign change in E. However, at C, light

~reflects off the denser glass, thus changing the phase of E by π. The extra distance traveled in the

air gap plus the sign change in E add up to a 2π ‘change’ in phase if d = λ2/4.

Problem 9.2: (Bekefi & Barrett 8.4) Newton rings
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a) From the figure on the right,

r
sin θ =

d
=

2R− d
r2

r
r
⇒ 2 = d(2R− d) ⇒ r2 ' 2dR (d2 � dR) d '

2R

b) For rays a as shown in the left figure, the phase difference between those that travel back and

1The notation “Bekefi & Barrett” indicates where this problem is located in one of the textbooks used in 8.03

in 2004: Bekefi, George, and Alan H. Barrett Electromagnetic Vibrations, Waves, and Radiation. Cambridge, MA:

MIT Press, 1977. ISBN: 9780262520478.



4πd
forth in the gap d and those that reflect off the curved surface of the glass is: δ = + π where

λ2
n2 = 1, n1 = n and λ1 = λ2/n(. For constructive interference, the condition is that δ = 2mπ

4d
(m = 1, 2, ...). Thus 2mπ = π + 1

λ2

)
Combining equations and replacing λ2 with λ (it is the

wavelength in air): rm =

[
(2m− 1)λR

1

2

] /2

Example: For λ=500 nm and R=10 m, some of the ring radii are:

r1 = 1.58 mm r2 =
√

3× 1.58 mm r13 =
√

25× 1.58 mm ' 7.9 mm

The ring

ring is
√spacing decreases with increasing radius r. The ratio of radius (m+ 1) to that of the mth

(2m+ 1)/(2m− 1). For m = 1 the ratio is ' 1.7, for m = 13 it is ' 1.04.

c) For destructiv(e interference, the condition is that δ = (2m+ 1)π (m = 1, 2, ...).
4d

(2m+ 1)π = π + 1

)
and so rm = [mλR]1/2 Substituting values of R = 2 m and λ = 640 nm,

λ
the values of rm are: rm = 1.13

√
m× 10−3 m.

− th
d) r1 = 1.13 mm r2 = 1.60 mm ∆r1,2 = r2 r1 = 0.47 mm where ri is the i

dark ring.r25 = 5.66 mm r26 = 5.77 mm ∆r25,26 = r26 − r25 = 0.11 mm

Problem 9.3: Rainbows

a) Incident unpolarized light: ‖ 0.5Io,⊥ 0.5Io
θ1 = 60◦, θ2 = 40.59◦ (Snell’s Law), n1 = 1.0, n2 = 1.331

r = 0.06587 I‖ r = 0.065872 × 0.5I0 = 0.002170I0‖

It = 0.5I0‖ − 0.002170I0 = 0.4978I0

r = −0.3381 Ir = 0.33812 0⊥ × .5I0 = 0.05715I⊥ 0

It = 0.5I0 − 0.05715I0 = 0.4429I0⊥

Degree of linear polarization of the transmitted light:

V =

∣∣∣∣It∣ ‖ − It⊥
It‖ + It⊥

∣∣∣∣∣ =

∣∣∣∣0.498− 0.443

0.498 + 0.443

∣∣∣∣ = 0.0584,

5.8% linearly polarized in the parallel direction.

b) Reflection at B. Incoming radiation: ‖ 0.443Io ⊥ 0.498Io
θ1 = ∠ OAB = ∠ OBA = 40.59◦, θ2 = 60.00◦, n1 = 1.331, n2 = 1.000

r = −0.06587 Ir = 0.065872 × 0.498I0 = 0.00216I‖ 0‖

r = 0.3381 Ir = 0.33812 × 0.443∣∣I0 = 0.0506I⊥ 0⊥

I
Polarization of the reflected light: V =

∣∣ r∣ ‖ − Ir⊥
Ir‖ + Ir⊥

∣∣∣∣∣ =

∣∣∣∣0.00216− 0.0506
= p

0.0506 + 0.00216

∣
0.918 (92% olarized).

It is not surprising that the reflected light at B is so highly polarized. The

∣∣
Brewster angle for the

transition water air is 36.9◦. The angle of incidence, θ = 40.6◦, is only

∣
→ 1 ∼ 3.7◦ larger than this.
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c) Radiation that arrives at C. Incoming radiation: ‖ 0.00216Io , ⊥ 0.0506Io
θ1 = 40.59◦, θ2 = 60.00◦, n1 = 1.331, n2 = 1.000

r = −0.06587 Ir = 0.065872 × 0.00216I0 = 9.37 10‖ ‖ × −6I0

It = 0.00216I0 0.00000937I0 = 0.00215I0‖

= 2

−
r 0.338 Ir = 0.3381 × 0.0506I⊥ 0 = 0.00578I0⊥

It = 0.0506I0⊥ − 0.00578I0 = 0.04482I0

It It
Polarization of the transmitted light: V =

∣∣∣∣∣ ‖ − ⊥

It‖ + It⊥

∣∣∣∣∣ =

∣∣∣∣0.00215− 0.04482
=

0.04482 + 0.00215

∣
0.9085.

In conclusion: The intensity of light emerging into the air at C is 4.7% (

∣∣
⊥ 4

∣
.48% , ‖ 0.22%) of I0,

i.e. 91% linearly polarized in the ⊥ direction.

d) Angle of incidence and refraction are θ1 and θ2, respectively. ∠ AOB = ∠ BOC = 180◦ − 2θ2
⇒ ∠ AOC = 4θ2. ∠ QOC = 4θ2 − θ1 ⇒ ∠ POC = 180◦ − 4θ2 + θ1. ∠ OCP = θ1
⇒ φ = 180◦ − ∠ POC − ∠ OCP = 180◦ − 180◦ + 4θ2 − 2θ1. So, the end result is φ = 4θ2 − 2θ1

e) Red Light n = 1.331 θ1 = 60◦ θ2 = 40.59◦ φred = 4θ2 − 2θ1 = 42.4◦

Blue/violet Light n = 1.343 θ1 = 60◦ θ2 = 40.15◦ φred = 4θ2 − 2θ1 = 40.6◦

dφ
f) φ = 4θ2 − 2θ1

dθ1
= 4

dθ2
dθ1
− 2 = 0 ⇒ dθ2

dθ1
=

1

2
dθ

sin θ1 = n sin θ2 cos θ1dθ1 = n cos θ2dθ2 ⇒ 2

dθ1
=

cos θ1
n cos θ2

=
1

2
2

cos θ2 =
n

cos θ1 = (1− sin2 θ2)
1/2 = (1− 1

n2
sin2 θ1)

1/2 = (1− 1

n2
+

1
cos2 θ1)

1/2

n2

4 1
cos2 θ1 = 1

n2
−
n2

+
1

n2
cos2 θ1 ⇒ 3

n2
cos2 θ1 = 1− 1

n2
=
n2 − 1

n2

cos2
n2

θ1 =
− 1

3

g) Red Light: cos2 θ1 = (1.3312− 1)/3 = 0.257 θ1 = 59.5◦ θ2 = 40.3◦ φmax = 4θ2− 2θ1 = 42.4◦

Blue/violet Light: cos2 θ1 = (1.3432−1)/3 = 0.2678 θ1 = 58.8◦ θ2 = 39.6◦ φmax = 4θ2−2θ1 = 40.6◦

The width of the visible-color region of the rainbow is therefore about 42.4◦ − 40.6◦ + 0.5◦ = 2.3◦

The 0.5◦ is added due to the fact that the sun has a diameter of 0.5◦. Thus, the width of the

rainbow is about 5–6% of its radius.

h) n = 1.5 θ1 = sin−1[1− (n2 − 1)/3]1/2 = 49.8◦ θ2 = 30.6◦ φmax = 4θ2 − 2θ1 = 22.8◦

Notice: the radius of the glass bow is only about half that of the rainbow! The glass bow is

also highly polarized as the Brewster angle (glass to air) is ∼ 33.7◦; the angle of incidence at the

reflection at B is only ∼ 3◦ smaller.
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Problem 9.4: (Bekefi & Barrett 8.5) Superposition of N oscillators
a) Let the points after addition of each

successive phasor be A,B,C,D and F .

A (3, 0),

B (3+3cos20◦, 3sin20◦),

C (Bx + 3 cos 40◦, By + 3 sin 40◦),

D (Cx + 3 cos 60◦, Cy + 3 sin 60◦) and

F (Dx + 3 cos 80◦, Dy + 3 sin 80◦).

F (∼10.138, ∼ 8.506)

OF =
√

(F 2
x + F 2

y ) ' 13.234

tan β = Fy/Fx ⇒ β ' 40.0◦ (2π/9)

Thus E(t) ' 13.234 cos(ωt+ 2π/9)
O A

B

C

D

F

β

−−→
Etot

20

20

20

20

b) Let MO = R. Adding the N vec-

tors, we end at Q. All the tips lie on a

circle with center at M . It follows from

4 MOP : OP/2 = R sin(α/2). It follows

from 4 MOQ: OQ/2=Rsin(Nα/2).

sin(1
Eliminate R: OQ = OP 2

Nα)

sin 1α
2

OQ is ahead of OP by phase angle QOP .

∠QOP = ∠QOT−∠POT = (Nα−α)/2.

To see that ∠QOT = Nα/2, draw the

α

α

α

Nα

1
2
Nα

M

O

S

P

Q

T

circle with center at M through O,P and Q; OT ⊥MO thus ∠QOT = ∠OMQ/2 = Nα/2. So Q

is ahead by phase angle α/2(N − 1). Since |OP | = A in this problem, we find:

sin(Nα/2)
E(t) = A

1
cos

sin(α/2)

[
ωt+ α(N

2
− 1)

Let us now test our result of Part (a): N=5 and α = π/9. N(α

]
− 1)/2 = 2α (= 40◦). The

amplitude of the vector is (A=3) 3 sin(2.5π/9)/ sin(π/18) ' 13.234. On the button!

By adding vectors, point Q ‘marches’ on the circumference of the circle and will reach O (amplitude

E = 0), then it traces its old route; a maximum is reached when Q is above M along the line OM .

At that point, the amplitude (2R) is OP/ sin(α/2) and thus depends on α.

c) Let us now plot the vector amplitude as a function of α. When α = 0 the vectors all line up

(they are in phase) and we obtain the largest amplitude possible. This amplitude then should be

N times the individual value of A; thus NA. Indeed, this can be found from the answer to Part

(b). For α = 0, 2π, 4π, 6π etc the “upstairs” and “downstairs” of the amplitude of E are zero.
sinNβ

Applying l’Hôpital’s rule: lim
β→π sin β

= lim
β→π

N cos β
= N .

cos β
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Thus, our function has a maximum amplitude of NA

when α = 0, 2π, 4π, .... The amplitude is zero when-

ever sin(Nα/2) = 0, so for α = 2π/N, 4π/N etc.

However, when at the same time sin(α/2) = 0, the

amplitude is a maximum! Thus, there are minima

when α = 2nπ/N (n is an integer) except when

n = N, 2N, 3N, ... n the figure, N = 7. Notice that

there are N − 1 = 6 minima in between the main
~maxima. I have plotted |E|. The light intensity is

proportional to |E|2 and thus is proportional to N2 at

maximum. By going from a radio interferometer with 0     2/N 4/N 6/N 8/N 10/N 12/N 2
0

NA

Plot of amplitude E as function of  (N=7)

Angle /  

E 

five dishes to one of ten dishes, the signal strength received increases by 102/52 = 4 (assuming the

dishes are all the same). I

Problem 9.5 — Think big

a) An EM plane wave of wavelength λ passes through a circular aperture of diameter D and

diffracts. If we measure the intensity of the diffracted light at a distance z away from the aperture,

such that z ≥ 2D2/λ, then we will observe Fraunhofer diffraction.

b) If we are located at P , a distance z from the aperture,

sin θ ≈ D/z (see figure). For Fraunhofer diffraction, the

first zero in intensity next to the prime maximum is ob-

served when sin θ ≈ 1.2λ/D. We therefore require that

D
z P

D/z � 1.2λ/D. If this were not the case, the zero in intensity would be blurred due to the

extended size of the aperture. Thus z � D2/1.2λ. Perhaps somewhat arbitrarily, z > 2D2/λ is

generally adopted.

c) An approximation of the minimum distance between the photographic plate and the slit is given
2D2

by the Fraunhofer diffraction relation, zmin ≈ 5.8 108 m. This is farther than the distance
λ
≈ ×

to the Moon!

d) Our guess is that the central maximum will be about the same as the size of the aperture, since

the Fraunhofer condition is just met; thus ≈ 12 m. A more formal calculation supports that. For

small φ, sinφ ≈ φ. Using sinφ = λ/D, φ ≈ λ/D ≈ x/z. Hence, x = zλ/D. Using z = z , themin
width of the central maximum is approximately 24 m.

e) We are now told that the new slit width is D′ = 2 m. Hence, the width of the central maximum

is now 6 times bigger, i.e. about 6× 24 m = 144 m.

f) The aperture is now way too large to meet the Fraunhofer condition. Thus, the bright maximum

will be about 96 m wide.

g) Alignment of the earth-star would be hopeless and contamination of your pattern by neighboring

stars (after all, one does not simply aim a 12 m slit at a star) would make your task of differentiation

impossible—not to mention problems of intensity.

MIT OCW 8.03SC 5 Problem Set #9 Solutions



Problem 9.6 (Bekefi & Barrett 8.7) — Angular resolution

In order to resolve the two light sources, we must be able to differentiate the two diffraction patterns

on the objective of the telescope. Let’s first see whether the 5 cm lens is capable of resolving the
1.2λ

two lights. Its angular resolution is ∆θ ≈ rad.
D
≈ 1.4× 10−5

The angular separation of 1 ft at a distance of 10 miles is about 1.9×10−5 rad. Thus, the telescope

will be able to resolve the two sources of light. If we now place a slit in front of the lens, whose

width is less than 5 cm, it will become more difficult to resolve the two lights. It’s not clear now

whether we should use as angular resolution λ/D or 1.2λ/D. For a narrow long slit, we should use

λ/D, but the length of the slit will NOT become much larger than its width, D. Therefore, we will

stick (conservatively) with an angular resolution of 1.2λ/D. Thus, we require 1.9×10−5 > 1.2λ/D.

Hence, D > 3.8 cm.

Problem 9.7 (Bekefi & Barrett 8.8) — Pinhole camera

The figure shows the setup of the camera. The diffrac-

tion pattern is shown on the right. A distant source

produces a Fraunhofer diffraction pattern on the screen

with a central maximum of width w ≈ 1.2Lλ/b. This
b

holds if, and only if, the coherence relation
L
<

λ

b
is satisfied. Otherwise, the pattern will be washed out

and we are dealing with Fresnel diffraction. The “blur”

x ~ 1.2L /b

L

b

that appears on the screen will then have a width of about b. This is clear if you imagine moving

the screen closer to the slit (imagine b = 1 cm). Then, we expect to see a light spot of width

b on the screen. Hence, the diffraction pattern width given by the first equation does not hold.

For example, let λ = 500 nm, L = 1 m and b = 1 cm. Then, the Fraunhofer diffraction width is

w ≈ 60 µm. However, in this case, the second equation does not apply. Notice that the coherence

relation L > b2/λ dictates that L > 10−4/5 × 10−7 ≈ 200 m, which is substantially larger than

1 m. The thought that you might see a spot with a width of about 60 µm is absurd! Instead, you

will see a spot with a width of about 1 cm (Fresnel diffraction).

You can now see that, starting at very small values of b for given L, the diffraction pattern will have

a width of about 1.2Lλ/b. For increasing values of b, the spot width will decrease (non-intuitive!).

Then a point is reached, for increasing b, when the coherence relation is no longer satisfied and

the spot size will have a width of about b and increases as b increases. Thus, the spot size as a

function of b has a local minimum. At this minimum, you have approximately achieved the best
1.2Lλ

resolution possible with a pinhole camera. The smallest spot width will appear when b.
b
≈

Thus, b =
√

1.2λL ≈
√
λL. Using λ = 500 nm, L = 1 m, the optimal size of the hole b ≈ 0.8 mm.

Can you think of a way to do an experiment at home to demonstrate this phenomenon?

Problem 9.8 (Bekefi & Barrett 8.9) — Double slit interference

a) The dielectric slab in the slit effectively changes the optical path length, i.e. it adds an extra

phase to the waves that pass through it. We can imagine an “air plate” of thickness d over slit A
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and a dielectric plate with the same thickness over slit B. When waves emerge from the plate at

A, they have traveled a distance d which is equivalent to a phase angle 2πd/λ0.

The waves that emerge from

plate B have traveled a dis-

tance d which is equivalent to

a phase difference of 2πnd/λ0.

Here n is the index of refrac-

tion of the dielectric slab. We
d

are given:
λ0

(
√
κ− 1) = 5/2.

5/2λ0
So, d = , where the in-

n− 1
dex of refraction n =

√
κ.

0 

In
te

ns
ity

sin 0/b
0/2b0/b 0/2b

The diffraction pattern depends on the phase difference δ between the waves emerging from the
d

two slits. In this case, δ = 2π (n 1), which means δ = 5π for the specific values of d and κ.
λ0

−

Thus, the Huygens sources at the 2 slits after traveling the distance d are out of phase by π. Hence,

the diffraction pattern has been shifted by π. So, there will be a minimum at θ = 0 and there will

be maxima at angles θm such that 2b sin θm = (2m+ 1)λ0/2. The plot shows intensity vs sin θ.

b) Diffraction causes the interference pattern to be modulated with a term sin2(β)/β2, where

β = (2πa/λ0) sin θ. Hence, considering( both interference and diffraction, the intensity pattern is:

sin (2πa sin θ/λ0)
I = 4I0

2πa sin θ/λ0

)2

cos2
(

2πb

λ0
sin θ − 5

π
2

)
,

where I0 is the maximum in-

tensity (W/m2), i.e. the in-

tensity of light if there were

only one slit. Note the 5π/2

phase shift in the cosine term

due to the dielectric slab. The

modulation due to the slit

width produces a first mini-

mum when (2πa/λ0) sin θ = π,

or sin θ = λ0/2a. 0 
0
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Since b/a = 10, sin θ ≈ θ ≈ 10λ0/2b = 5λ0/b. A plot of intensity vs sin θ is shown.
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