
Problem Set 10 Solutions
8.04 Spring 2013 Thursday, May 9

Problem 1. (5 points) Zero Point Energy in a Lattice

Requiring go � 1 means that the barriers are very strong. In this case, transmission across
the barriers is very small so the electrons can be approximated as mostly trapped inside
individual wells. We can thus estimate the ground state energy by using the formula for the
ground state of an infinite well of length L,

π2~2
Eg.s. = , (1)

2mL2

On the other hand, if the barriers were weak (go � 1), the electrons would essentially be
free to roam the entire crystal of length D, and the zero point energy would be given by

π2~2
Eg.s. = . (2)

2mD2

which is much lower than the value in Equation 1, since D � L.

This explains an important property of solids: as long as you are looking at chunks of
the solid that are parametrically larger than the inter-atomic spacing (D � L), the basic
material properties of the solid (opacity, conductivity, etc) do not change as you study larger
and larger chunks. Note that this would not be true in the absence of the periodic lattice!
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Problem 2. (5 points) Blinded by Science

A material is opaque to light of frequency f if it efficiently absorbs photons of E = hf . To
do so while conserving energy, the material must be able to move from its initial state to an
excited state whose energy differs by Ef − Ei = hf .

Suppose we fire a photon of frequency f at a Diamond. To absorb the photon, one of the
electrons in the (filled) valence band must be excited into an unoccupied excited state. But
the first available excited state is Egap above the highest-energy available electron! So it
is simply impossible for the diamond to absorb the photon unless hf ≥ Egap. Photons
with energy less than Egap simply cannot be absorbed by the diamond. Diamonds are thus
transparent to photons with frequencies lower than

Egap
fmin = .

h
∼ 1.3× 1015 Hz (3)

This minimum frequency corresponds to a maximum wavelength of 230 nanometers, which
is well into the ultraviolet band. Above this frequency (or below this wavelength) photons
can be absorbed, and diamond is opaque – but since the human eye is sensitive only to light
in the wavelength range of ∼ 400− 700 nm, diamonds appear translucent1.

So why would a diamond ever be anything other than perfectly clear? For a particular
diamond to absorb visible light with hf < Egap, there must be some extra states inside
the bandgap. This implies that the periodic-crystal approximation was not accurate. For
example, there may be impurities in the lattice, eg points in the lattice where a carbon atom
is replaced by another atom with a different number of valence electrons. In the case of blue
diamonds, this is typically due to a dust of boron atoms, each of which has one less valence
electron than the carbon it has displaced.

1Of course, photons can Bragg-scatter off the diamond lattice, hence the spectacular dance of light that
scatters off my wife’s engagement ring when she waves her hand in the sunlight.
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Problem 3. (5 points) The World is Full of Fermions...

To determine whether hydrogen atoms are bosons or fermions it suffices to take two hydrogen
atoms and swap them. If the wavefunction changes sign under this exchange operation, the
atoms are fermions; if not, they are bosons. Now, since each Hydrogen atom is a bound
state of an electron and a proton, the wavefunction for two hydrogen atoms takes the form,

ψ(H1, H2) ≡ ψ( e1, p1 ; e2, p2 ), (4)

1st atom 2nd atom

where e1 represents the coordinates and the spin of the electron belonging to the first atom, p2
those of the second proton, and so forth. We wan

︸ ︷︷
t to

︸
kno

︸
w

︷︷
what

︸
happens to the wavefunction

as we exchange H1 and H2,
ψ(H1, H2) = ±? ψ(H2, H1) (5)

To exchange the two atoms, we can simply exchange the constituent electrons and protons.
But the electrons are ferions, and the protons are fermions, so exchanging them in pairs we
find,

e
ψ(e1, p1; e2, p

1�e2 p1�p2 2
2) = (−1)ψ(e2, p1; e1, p2) = (−1) ψ(e2, p2; e1, p1) (6)

so
ψ(H1, H2) = +ψ(H2, H1) (7)

i.e. Hydrogen atoms are bosons.

The same logic applies to bound states of N fermions: for each pair of constituent fermions
exchanged, the wavefunctions acquires a minus sign; when we are done with exchanging all
N constituent fermions between the two bound states, the wavefunction will have acquired a
factor of (−1)N . Thus bound states of N fermions are bosons if N is even (the wavefunction is
even under the exchange of two such bound states) and fermions ifN is odd (the wavefunction
changes sign under exchange)

Note: In quantum field theory there is a theorem (the spin-statistics theorem) which states that all
half-integer spin particles are fermions and all integer spin particles are bosons. This theorem can
be used to construct an alternate proof. The total spin of the composite system of a proton and an
electron is the vectorial sum of the individual spins:

⇀ ⇀ ⇀
SH = Sp + S e, (8)

from which follows that a measurement of the total spin along an arbitrary direction n̂:
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⇀ ⇀ ⇀
n̂ · SH = n̂ · Sp + n̂ · S e (9)

can have only the results:

⇀ 1 1 1 1 1 1 1 1
n̂ · SH :

{
+ , , + , = 1, 0, 0, 1 . (10)

2 2 2
−

2
−

2 2
−

2
−

2

}
{ − }

We see that all possible eigenvalues are integers, so the hydrogen atom is a boson.

Generally for an arbitrary number N of fermions the possible eigenvalues for the total spin have
the form:

∑N N
2mi + 1 ∑ 1

{
half− integer N odd

= mi + N = , (11)
2 2 integer N even

i=1 ︸i=1

inte

︷︷
ger

where m

︸
i’s are integers.
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Problem 4. (20 points) Identical Particles and Spooky Correlations

(a) (3 points) This is just a simple matter of calculating the expectation values for x1
and x2:

−∞ −∞
〈x1〉D =

∫ ∫
ψD (x1, x2)

∗x1ψD (x1, x2) dx1dx2
−∞ −∞

=

∫ −∞ −∞
φ0 (x1)

∗x1φ0 (x1) dx1 ×
∫

φ1 (x2)
∗φ1 (x2) dx2

−∞ −∞

=1

1 −x 2

= √
∫ −∞

/ρ2x1e 1 dx1 = 0
ρ π

︸ ︷︷ ︸
(12)

−∞

〈x2〉D =

∫ −∞ ∫ −∞
ψD (x1, x2)

∗x2ψD (x1, x2) dx1dx2
−∞ −∞

=

∫ −∞ −∞
φ0 (x1)

∗φ0 (x1) dx1×
∫

φ1 (x2)
∗x2φ1 (x2) dx2

=

︸−∞
=1

︷︷ −∞

2√
∫ −∞ x 3

2 2

e−x2 /ρ2dx
ρ π ρ2

︸
2 = 0, (13)

−∞

where we used the fact that the final integrands are odd functions.

5



−∞
〈x1〉S/A =

∫ ∫ −∞
ψS/A (x1, x2)

∗x1ψS/A (x1, x2) dx1dx2
−∞ −∞

1 −∞
=

∫ −∞
φ0 (x1)

∗x1φ0 (x1) dx1
2

× φ
−∞

∫
1 (x2)

∗φ1 (x2) dx2︸ −∞

1
∫ =〈x1〉D=0

−∞
φ0 (x1)

∗x1φ1 (x1) dx1

︷︷
−∞

± ×
∫

φ1 (x2)
∗φ0 (x2) dx2

︸
2 −∞ −∞

=0

1±
∫ −∞ −∞

φ1 (x1)
∗x1φ0 (x1) dx1 ×

︸
( 2

︷︷∫
φ0 x ) ∗φ1 (x2) dx

2

︸
2

−∞ −∞∫ =0

1 −∞ −∞
+ φ1 (x1)

∗x1φ1 (x1) dx1 ×

︸ ︷︷∫
φ0 (x2)

∗φ0 (x2) dx
2

︸
2 = 0 (14)︸−∞ ︷︷ −∞

x1�x2⇒=〈x2〉 =0D

︸

〈x2〉S/A =

∫ −∞ ∫ −∞
ψS/A (x1, x2)

∗x2ψS/A (x1, x2) dx1dx2
−∞ −∞

1 −∞
= φ0 (x1)

∗φ0 (x1) dx1
2

∫
×

−∞

∫ −∞
φ1 (x2)

∗x2φ1 (x2) dx2

1

︸ −∞

=〈x2〉 =0D

±
∫ −∞ −∞

φ0 (x1)
∗φ1 (x1) dx1

︷︷
×
∫

φ1 (x2)
∗x2φ0 (x2) dx2

︸
2 ︸−∞ −∞

=0

1
∫ −∞ −∞

± φ1 (x1

︷︷
) ∗φ0 (x1) dx

︸
1×
∫

φ0 (x2)
∗x2φ1 (x2) dx2

2 ︸−∞ −∞

=0

1
+

∫ −∞ −∞
φ1 (x1

︷︷
) ∗φ1 (x1) dx

︸
1 ×

∫
φ0 (x2)

∗x2φ0 (x2) dx2 = 0. (15)
2 ︸−∞ −∞

x1�x2⇒
︷︷
=〈x1〉 =0D

Another way to compute 〈x2〉S/A is to make use of the symmetry properties of

︸
ψS/A (x1, x2).

Let’s consider some function f(x2) and compute its expectation value:
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−∞
〈f (x2)〉S/A =

∫ ∫ −∞
ψS/A (x1, x2)

∗f (x2)ψS/A (x1, x2) dx1dx2
−∞ −∞

x1�x
= 2

∫ −∞ −∞
ψS/A (x2, x1)

∗f (x1)ψS/A (x2, x1) dx2dx1∫ −∞
−∞

∫
−∞

=

∫ −∞ [
±ψS/A (x1, x2)

∗ f (x1) ±ψS/A (x1, x2) dx2dx1
−∞ −∞

=

∫ −∞ ∫ −∞
ψS/A (x1, x2)

∗f (x

] [
1)ψS/A (x1, x2) dx

]
2dx1

−∞ −∞

= 〈f (x1)〉S/A . (16)

b) (4 points) In order to compute 〈(x1 − x2) 2〉 = 〈x 2 2
1 〉−2 〈x1x2〉+ 〈x2 〉, for each wave-

function we have to calculate three expectation values: 〈x 2
1 〉, 〈x 2

2 〉, and 〈x1x2〉.

ψD: 〈
x 2
1

〉
D =

∫ −∞ ∫ −∞
ψD (x1, x2)

∗x 2
1 ψD (x1, x2) dx1dx2

=

∫−∞ −∞
−∞ −∞

φ0 (x1)
∗x 2

1 φ0 (x1) dx1 ×
∫

φ1 (x2)
∗φ1 (x2) dx2

−∞ −∞∫ =1

1 −∞ 2

√ 2 −x 2 2

= x1 e 1 /ρ ρ
dx1 =

ρ π 2

︸ ︷︷ ︸
(17)

−∞

〈
x 2
2

〉
D =

∫ −∞
−∞
−∞

∫ −∞
ψD (x1, x2)

∗x 2
2 ψD (x1, x2) dx1dx2

−∞

=

∫ −∞
φ 2
0 (x1)

∗φ0 (x1) dx1×
∫

φ1 (x2)
∗x2 φ1 (x2) dx2︸−∞ −∞

=1

2 −∞ x 4 3ρ2
=
ρ
√

︸∫
2

e
π

︷︷
2 −x2 /ρ2dx2 = (18)
ρ2 2−∞

〈x1x2〉D =

∫ −∞ ∫ −∞
ψD (x1, x2)

∗x1x2ψD (x1, x2) dx1dx2∫−∞ −∞
−∞ −∞

= φ0 (x1)
∗x1φ0 (x1) dx1×

∫
φ1 (x2)

∗x2φ1 (x2) dx2 = 0 (19)︸−∞ ︷︷ ︸ ︸−∞
=〈x1〉 =0 =D 〈x

︷︷
2〉 =0D

and
ρ2 3ρ2

︸
(x1 − x 2

2) D = +
2 2

− 0 = 2ρ2. (20)

(

〈 〉
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ψS/A:

〈
x 2
1

〉
S/A =

〈
x 2
2

〉
S/A =

∫ −∞ ∫ −∞
ψS/A (x 2

1, x2)
∗x1 ψS/A (x1, x2) dx1dx2

−∞∫ −∞

1 −∞
= φ (x ) ∗x 2

−∞

0 1 1 φ0 (x1) dx1 φ1 (x2)
∗φ1 (x2) dx2

2
×

−∞

∫
︸ −∞

2
=〈x 2

1

1 −∞
φ (x ) ∗x 2φ (x ) dx

︷︷
∫2

±
∫ 〉 ρ

D=

−∞

0 1 1 1 1 1 × φ1 (x2)
∗φ0 (x

︸
2) dx2

2 −∞

1 −∞
± φ1 (x1)

∗x 2
1 φ0 (x1) dx1

2
×

︸−∞
=0

︷︷∫ ∫ −∞
φ0 (x2)

∗φ1 (x2) dx

︸
2

−∞ −∞

=0

1
+

∫ −∞
2

−∞
φ1 (x1)

∗x1 φ1 (x1) dx1 ×

︸
(x

︷︷∫
φ0 2)

∗φ0 (x2) dx
2

︸
2︸−∞ ︷︷ −∞

x �
2

x ⇒=〈x 2 3
1 2 〉 ρ

2 D=
2

= ρ2 (21)

︸

−∞ −∞
〈x1x2〉S/A =

∫ ∫
ψS/A (x1, x2)

∗x1x2ψS/A (x1, x2) dx1dx2
−∞ −∞

1 −∞
=

∫ −∞
φ0 (x1)

∗x1φ0 (x1) dx1×
∫

φ1 (x2)
∗x2φ1 (x2) dx2

2 ︸−∞
=〈x
︷︷
1〉 =0

︸ ︸−∞∫ ∫ =〈x =0D 2〉D

1 −∞ −∞
± φ0 (x1)

∗x1φ1 (x1) dx1 × φ1 (x2)

︷︷
∗x2φ0 (x2) dx2

︸
2 −∞ −∞

1 −∞
±

∫ −∞
φ1 (x1)

∗x1φ0 (x1) dx1 ×
∫

φ0 (x2)
∗x2φ1 (x2) dx2

2 −∞ −∞

1
+

∫ −∞ −∞
φ1 (x1)

∗x1φ1 (x1) dx1×
∫

φ0 (x2)
∗x2φ0 (x2) dx2

2 ︸−∞
1 ⇒

︷︷
=0

︸ −∞

x �x2 =〈x2〉D
︸

x1�x2⇒
︷︷
=〈x1〉 =0D

−∞ 2

= φ0 (x1)
∗x1φ1 (x1) dx1

︸
±
(∫
−∞

)
= ±

( √
2√
∫ 2−∞ 2

x 2
1
e−x

2
1 /ρ2dx1

ρ π ρ

)
= ±

(
ρ√
2−∞

)
ρ2

= ± (22)
2
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and 〈
(x1 − x2) 2

〉
S/A = ρ2 + ρ2 − 2

(
ρ2±
2

)
=

{
ρ2 S

. (23)
3ρ2 A

We see that the mean separation between particles is the smallest for the symmetric
wavefunction and the biggest for the antisymmetric wavefunction. This means that
in the bosonic case the two particles are more likely to stay close together than in
the fermionic case, and the case of distinguishable particles is in the middle. The
two particles do not experience different forces. However, we can interpret the values
of the mean square distances as an effective attraction/repulsion between the two
particles. This is due to the symmetry properties of the corresponding wavefunctions.
For example, the antisymmetric wavefunction is such that ψA(x1, x1) = 0, i.e. the
two particles will never be at the same place, and it√is intuitive to think of this as an
effective repulsion. Note instead that ψS(x1, x1) = 2ψD(x1, x1), which means that
when the wavefunction is symmetric the two particles are more likely to be at the
same place than in the distinguishable case, hence we can interpret this as an effective
attraction between the two bosons.

(c) (3 points) Below are shown the probability densities associated with the three wave-
functions (units indicated on the figures). The semi-transparent green rectangle rep-
resent the x1 = x2 plane.

ψD:
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ψS:

ψA:

Again we see that for x1 = x2 the probability density is maximal for the symmetric
wavefunction and minimal (actually null) for the antisymmetric wavefunction.
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(d) (5 points) By assumption, the N particles we place in the trap do not interact with
ˆeach other, so the N -particle energy operator E takes the simple form,

N

Ê =
∑

Êi
i=1

The system is thus separable, with N -particle energy eigenstates and energies

N

Ψn1,...nN (x1, . . . , xN) = ϕn1(x1) . . . ϕnN (xN) , E{ni = E} ni

i=1

with ϕ (

∑
n x) and En being the single-particle energy eigenstates and eigenenergies. The

lowest possible energy for N particles is thus EN
min = N E1 corresponding to all particles

being in the single-particle ground state,

Ψ{1,...,1 (x} 1, . . . , xN) = ϕ1(x1) . . . ϕ1(xN) , Emin = N E1

If the N particles in our box are identical bosons, it is possible to put them all in
the same state, and in particular it is possible to put them in the same single-particle
ground state as above. The N -boson ground state ΨB

1 is thus

ΨB B
1 (x1, . . . , xN) = ϕ1(x1)ϕ1(x2) · · ·ϕ1(xN), E1 = N E1

which is invariant under the exchange of any pair of particles, as is required for the
wavefunction to describe identical bosons, as one can easily check.

The first excited level, ΨB
2 , is then obtained by raising a single particle to the next

allowed single-particle eigenstate. However, the wavefunction for N bosons must be
completely symmetric under the interchange of any two bosons, so the amplitude to
raise any one of the N bosons must be equal, giving

N

ΨB
2 (x1, . . . , xN) = CB

∑
ΨB

1 (x1, . . . , xi 1, x
B

i+1, . . . , xN)ϕ2(xi), E2 = (N 1)−
=1

− E1+E2 .
i

By construction, ΨB
2 is symmetric under any permutation Pij. The minimum energy

required to excite the system of N bosons is thus simply

∆EB = E2 − E1.

Just for fun, let’s compute∫the normalization factor CB. The norm of ΨB
2 is

dx · · · dx |ΨB(x , . . . , x )|21 N 2 1 N =

N

= |CB|2
∑∫

dx B
1 · · · dxNΨ1 (x1, . . . , xi 1, x ) B

i+1, . . . , xN ϕ2(xi)Ψ1 (x1, . . . , xj 1, xj+1, . . . , xN)ϕ2(x− − j)
i,j=1

N

= |CB|2
i,j

∑ N

δ B
ij = C 2 = N CB 2,

=1

| |
∑
i=1

| |

and therefore CB = √1 .
N
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(e) (5 points) For the case of N identical fermions in the same box, we need to find
the lowest-energy eigenstate which is antisymmetric under the exchange of any pair of
particles. If any two particles are in the same state, then the antisymmetric combina-
tion identically vanishes, so each particle must be in a different single-particle energy
eigenstate. The lowest possible energy for our N fermion system is thus

EFmin = E1 + . . . EN

Note that the fermionic ground state has a (much!) higher energy than the bosonic
ground state. A simple state with this energy is

N

Ψ1,2,...N(x1, . . . xN) = ϕ1(x1) . . . ϕN(xN) , E ni ={
∑

E} i

i=1

However, this state is not antisymmetric under the interchange of any pair of parti-
cles. A completely antisymmetric wavefunction of this form can be constructed by
superposing all possible permutations {pi} in which the ith particle is in the p th

i state,
weighted by a relative sign determined by how many exchanges were involved in that
permutation. Explicitly,

ΨF
1 (x1, . . . xN) = CF

∑
(−1)|p| ϕp1(x1)ϕp2(x2) · · ·ϕpN (xN),

p

where p is any permutation of the particles and |p| is the number of exchanges required
to turn the permutation into the standard ordering (1,. . . N). By construction, this
wave function is totally antisymmetric (check!).

To fix the normalization, CF , we must compute the norm of ΨF
1 ,∫

dx1 · · · dxN |ΨF
1 (x1, . . . , xN)|2 =

|CF |2
∑∑ ′

= (−1)|p|(−1)|p |
∫
dx1 · · · dxN ϕp∗1(x1) · · ·ϕ

∗
p (xN)ϕp′ (x1) · · ·ϕp′ (x1N 1

)
N

p p′

= |CF |2
∑∑

(− ′
1)|p|(−1)|p | δ = |CF |2

∑
(−1)2 pp,p′

| | = C =
p p p

| F |2
∑
p

|CF |2N !,
′

where δp,p′ is equal to 1 when p and p′ are the same permutation, and 0 otherwise, and
we used the fact that there are N ! permutations acting on the N positions. Therefore

CF 1
= √ .

N !

To excite this fermionic ground state, we must take of of the identical particles and
lift it to the next available single-particle energy eigenstate. The first such available
state compatible with antisymmetry of the N -fermion wavefunction is thus ϕN+1, so
the lowest possible excited energy eigenstate for the N -fermion system must be,

EFfirst = E1 + · · ·+ EN−1 + EN+1 ⇒ ∆EF = EN+1 − EN .
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Problem 5. (15 Points) Meaning of the Crystal Momentum

(a) (7 points) In this problem we consider an electron in a periodic potential with energy
spectrum E(q) in a wavepacket with crystal momentum ~q propagating with group

velocity vg = 1 ∂E(q) . If an external force F acts on the electron for a short time ∆t, it~ ∂q

will do work on the electron and increase its energy:

∂E(q) 1 ∂E(q)
∆E = E(q + ∆q)− E(q) = ∆q = ∆(~q). (24)

∂q ~ ∂q

This increase in energy is equal to the work done:

∆x
W = F∆x = F ∆t = Fvg∆t. (25)

∆t

Equating the two expressions, inserting the definition of vg, and taking the limit ∆t→ 0
gives the desired result:

d(~q)
F = . (26)

dt

(b) (8 points) An electron in an allowed energy band is not in a momentum eigenstate,
and so does not have a definite momentum or velocity. However, we just proved that
this system responds to an imposed force as if there were a particle with momentum
~k and velocity vg. We call this object the “quasiparticle”. So what is its mass, m ?∗

By definition, mass is the ratio of Force to acceleration2, F = m a. Since the velocity∗
of our wavepacket is the group velocity v = 1 ∂E(q)

g , we have~ ∂q

dv d
[

1 ∂E(q)
]

1 ∂2E(q) dq 1 ∂2g E(q)
a = = = = F (27)

dt dt ~ ∂q ~ ∂q2 dt ~2 ∂q2

where the last equality used the result from part (a), and in the step before we used
the chain rule. Comparing to F = m a, we find,∗

1 1 d2E(q)
= . (28)

m ~2 dq2∗

2Here we are implicitly using Ehrenfest’s Theorem: the expectation values of a quantum systems respect
the appropriate classical equations of motion. In the above calculations, all quantities can be taken to
represent expectation values. NB, you might be tempted to say, “mass is the ratio of momentum to velocity”,
but that is not true when the mass is changing, as is familiar from the classical rocket problem.
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Since m = m∗ e, the quasiparticles are not simply free electrons. But of course they’re
not free electrons, the electrons are scattering off a periodic potential! Think back
to the ping pong ball experiment described in lecture. The mass of the ping pong
ball was much greater than expected due to the interaction between the ping pong
ball and the fluid, with the interaction impeding the acceleration of the ping pong
ball. Here, similarly, the interaction of the electron with the lattice – in particular, the
effect of constructive and destructive interference of the electron wavefunction off all
the barriers in the lattice – effectively impedes the acceleration of the electron.

6
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Problem 6. (15 Points) The Group Velocity and Effective Mass

(a) (7 points) To sketch vg and m , we simply use the expressions from the previous∗
problem,

1 ∂E(q) 2

vg = and m = ~2
~ ∂q

[
d E(q)

∗
dq2

]−1
, (29)

taking the necessary derivatives of E(q). Shown below are the plots for E(qL), vg(qL)
and m (qL), with the vertical axes once again plotted in arbitrary units:∗
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From these graphs, one can see that

• At the bottom of each band, vg = 0 and the wavefunctions are standing wave
solutions. The effective mass m is positive.∗

• In the middle of a band, vg is non-zero and can be either positive or negative.
This corresponds to traveling wave solutions. The effective mass m , likewise,∗
may be positive or negative, and at one point diverges!

• At the top of each band, vg = 0 and we once again have standing wave solutions.
The effective mass m is negative.∗

(b) (8 points) The force experienced by an electron in a uniform electric field E is given
by −eE . Integrating the expression F = d(~q)/dt gives

~q = −eEt, (30)

where we have omitted the integration constant because we are told that the electron
sits initially at the bottom of an unoccupied band (so q = 0 initially). As the electron
is accelerated, then, the quantity qL increases linearly, and we can read off E(qL) and
vg(qL) from our graphs. Now, recall that all the graphs in the previous part were
periodic in qL with period 2π. The graph for E(qL), for example, looks like this:

E
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Thus, both the electron’s energy and its velocity vg oscillate.
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The velocity of the electron changes in a way that may naively seem to violate the
conservation of momentum. However, the electron is not a free particle, and interacts
with the lattice. Momentum is therefore exchanged between the electron and the lat-
tice, and thus total momentum is conserved.

More precisely, consider what happens to the momentum m v∗ g as our quasiparticle
is accelerated. Near the bottom of the band, the mass is positive and the velocity
increases with time, so the momentum increases too – the quasiparticle behaves just
like an electron, albeit with a slightly modified mass. As we approach the middle of
the band, the effective mass grows large, which means the acceleration induced by
the constant EMF becomes small – and indeed the velocity approaches its maximum.
As we pass the middle of the band, a remarkable thing happens – the mass becomes
(infinitely) negative, which means our quasiparticle should accelerate in the opposite
direction as the external force – and indeed, above the midpoint, the velocity begins
to get smaller! Continuing to the top of the band, the mass becomes a small negative
number and the velocity approaches zero, accelerating precisely as we’d expect given
the EMF and the magnitude of the mass but in the opposite direction – it behaves like
a positively charged quasiparticle with positive mass |m .∗| As we continue following
the quasiparticle, it reverses its trajectory, accelerating down the band and returning
to the bottom to repeat the cycle.

Now consider what happened to the momentum m vg during this cycle. At any mo-∗
ment of time, though m and vg might change sign, the change in the total momentum,∗
δ(m vg) is always strictly positive, and indeed equal to the incident force. So while∗
velocity is certainly not conserved, nor energy, the crystal momentum is.

Note that all of the preceding discussion hinged on the fact that our quasiparticle
(née electron) was in an unfilled band, and could therefore move “freely” between en-
ergy states within a band and change velocity in response to an external electric field.
In a metal, in which the valence band is partially filled, we must deal with the com-
plexities of many-electron systems. With insulators, on the other hand, the outermost
electrons are typically at the top of a filled band, so the electron cannot change its
energy at all unless the external force imparts enough energy to kick it across the gap.
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Problem 7. (35 Points) Transmission, Reflection and Bandgaps in 1d

(a) (4 Points) The scattering phases are defined3 so that

t =
√
Te−iϕ and r = ±i

√
Re−iϕ (31)

We are also given that
t2

cos qL =
− r2

eikL
1

+ e−ikL. (32)
2t 2t

First we find t2 − r2:
t2 − r2 = Te−i2ϕ +Re−i2ϕ = e−i2ϕ, (33)

where we have used the fact that T + R = 1, by definition. Substituting this into
Equation 32 gives

1
cos qL =

(
e−i2ϕeikL + e−ikL

1
=

2t

)
2
√
T

(
eikL−iϕ + e−ikL+iϕ

which is our desired result.

) cos(kL
=

− ϕ)√ , (34)
T

(b) (4 Points) Since T < 1, the RHS of Equation 34 has always modulus greater than 1
in some neighborhood of kL−ϕ = nπ. Below is shown a plot of the RHS of 34 plotted
against kL− ϕ :

5 10 15 20 25 30
kL-j

-4

-2

2

4

Since the L.H.S. of Equation 34 must be between −1 and +1, only regions where the
red curve is between the two blue horizontal lines will solutions exist. We can see

3See eg Liboff’s discussion of 1d scattering. For a nice discussion of scattering in 1d which goes a bit
beyond what we’ve done, see eg these lecture notes by Ben Simons or the very thorough but readable
discussion in Elementary Quantum Mechanics in One Dimension by R. Gilmore (not D. Waters of P. Floyd,
though that’s an excellent resource for diffraction, too). For a more formal and terse discussion, see J. H.
Eberly, Quantum Scattering Theory in One Dimension, American Journal of Physics 33 (1965) 10 pp.771.
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from the plot that the gap regions (where no solutions exist) occur at the “peaks”
and ”valleys” of the curve, which because of the cosine dependence of the R.H.S. of
Equation 34 occur at roughly kL− ϕ = nπ.
From the above result, we can say that ϕ sets the global position of the gaps of the
band structure. In other words, shifting ϕ corresponds to an overall shifting of the
gaps positions.

(c) (6 Points) If the barriers are very weak, we expect excellent transmission (T ≈ 1)
and poor reflection (R ≈ 0). We also expect the phase shift to be small (consider a
situation where we slowly dial the strength of the potential down to zero — we expect
the phase shift to continuously go to zero). In this limit, our plot looks like this:

2 4 6 8 10
kL

-2

-1

1

2

The gap regions (the parts that poke below −1 and above +1) are narrow and are
found in regions close to kL ≈ nπ. Since the gaps are narrow we can solve for the
intersections by Taylor expanding Equation 34 about kL = nπ:

cos kL )∓ 2

cos(nπ ±
2

ε) cos(nπ ε sinnπ − ε cosnπ
√
T

√ 2
∓ . . . (

= =
−1)n(1− ε + . . . )

2 .
T

≈ √
T

√
T

(35)
From the graph, we can see that for odd n the lines intersect at cos qL = −1 wheres
for even n they intersect at cos qL = +1. The (−1)n factor therefore cancels the ±1
on the L.H.S. of Equation 34, and we have

1
1

− ε2

≈ √ 2
√ ε2

T
⇒ T ≈ 1− (36)

2

Using
√
T =

√
1−R ∼ 1−R/2, then plugging into the above, thus gives,

ε
√

≈ R . (37)

where we have used the fact that T + R = 1 and that R is small in the limit of weak
barriers.√ We see that for weak barriers the width in kL of the gaps are proportional
to R. In the plot below we show E(q) (with the vertical axis in arbitrary units) as a
function of qL for a system like this:
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(d) (7 Points) In the limit of strong barriers, we expect low transmission (T small), high
reflection (R ≈ 1) and the phase shift to be approximately π/2. From the plot on the
next page, we can see that the energy bands are narrow, and centered around kL = nπ.

5 10 15
kL
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5

10

Once again, this suggests that we can use a Taylor series expansion to approximate
the behavior around kL = nπ:

cos(kL+ δ) cos(kL+ π ) cos kL cos π − sin kL sin π

√ = 2

T
√ = 2 2 sin kL

T
√ =
T

− √ (38a)
T

sin(nπ + ε) sinnπ
=

− ε cosnπ + . . .− √
T

≈ − √ (38b)
T

≈ (−1)n
ε√ . (38c)
T

With ε > 0 (i.e. for the top edge of the band) the curve to intersect is (−1)n, so the
minus signs once again cancel, giving

ε√ = 1
T

⇒ ε =
√
T , (39)

so the width of kL in the energy band is directly proportional to
√
T .

Above we show a typical plot of E(q) that results from this strong barrier limit, once
again with the vertical axis in arbitrary units and the horizontal axis in units of qL.
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(e) (7 Points) In Problem Set 7, we analyzed scattering off a single delta function, and
found that the ratio of the transmitted amplitude to the incident amplitude was

C 1
= . (40)

A 1− imV0~2k

To translate to the notation used in this problem, we need to make the replacement
V0 → − ~2go . Moreover, the ratio C/A is the quantity t defined in this problem by the

2mL

equation
t =
√
Te−iϕ. (41)

We therefore have
1 1

t = 2

1 + i go
=

− i go
kL (42)
g 2 .o

2kL 1 +
(
2kL

Comparing the last two equations and using e−iϕ = cos(

)
ϕ) + i sin(ϕ), we see that

2kL
cotϕ = − . (43)

go

Similarly, the transmission coefficient is given by

T =

( 2
2kL
go

)
2( cot ϕ cot2) ϕ

2 = = = cos2 ϕ. (44)
1 + cot22kL ϕ csc2 ϕ

1 +
go

Let us now insert everything into Equation 34. The L.H.S. is already in the form we
want, so we consider the R.H.S.:

cos(kL− ϕ) cos kL cosϕ+ sin kL sinϕ√ = =
T cosϕ

go
= cos kL+ cotϕ sin kL = cos kL+ sin kL, (45)

2kL

and thereby arrive at the familiar result:

go
cos qL = cos kL+ sin kL. (46)

2kL
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~2(f) (7 Points) Since the energy E = k2 is a real number, we want k to be either real or
2m

purely imaginary. For either sign of go, the equation we need to solve is always

go
cos qL = cos kL+ sin kL. (47)

2kL

When k is imaginary, it’s more convenient to define κ = −ik, and the above equation
translates into

go
cos qL = coshκL+ sinhκL. (48)

2κL

Therefore, regarding both k and κ as real, (47) gives us solutions corresponding to
positive energy, and (48) accounts for solutions with negative energy, because

~2k2 ~2κ2
E = =

2m
− < 0.

2m

There are three different regimes for this problem: go > 0, go < −4 and −4 < go < 0.
In the previous parts we explored the first case, for which we know that there are no
bound states, and this fact corresponds to having no solutions to equation (48). This
can be seen from the following plot, where go = 2.
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kL
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The red curve is the plot of the RHS of (47), and the green curve is the plot of the
RHS of (48). Note that the green curve lies outside the horizontal stripe between -1
and 1, and this corresponds to the fact that we don’t have solutions to (48). In the
second case the plot is as follows, with go = 5:−
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Note that now also the green curve has an overlap with the horizontal stripe, so that
we have solutions to (48). These solutions correspond to a band of bound states, which
is always just one, no matter how negative go, and we have multiple bands for positive
energy states, which correspond to the overlaps of the red curve with the horizontal
stripe. The case when −4 < go < 0 is represented in the following plot, with go = −1:
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which corresponds to the fact that there is one band which is composed partially by
bound states and partially by positive energy states. Below are the plots of E(q)
corresponding to the three different cases.
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Problem Set 10 Solutions
8.04 Spring 2013 Thursday, May 9

Problem 8. (OPTIONAL) Standing Waves at the Band Edges

Before tackling this problem, let us first remind ourselves of the system we studied in lecture.
The potential was a periodic series of delta functions:

∞ ~2 go
V (x) = δ(x

2m L
s=

− sL). (49)
−∞

Between the delta function barriers, the

∑
solution to the Schrödinger equation takes the form

ψ ikx ikx
E(x) = Ae +Be− , (50)

~2where E = k2 . Since the potential is periodic, we expect the probability distribution for
2m

energy eigenstates to also be periodic; however, the wavefunction is not periodic, but
rather satisfies the condition,

ψE(x+ L) = eiqLψE(x), (51)

where q is known as the crystal momentum. By imposing continuity on the wavefunction
and the jump condition on the slope, plus the non-periodicity condition, we get

A+B = Aei(k−q)L +Be−i(k+q)L (52a)
go

(A+B) = ik(A B
L

−B)− ik Aei(k−q)L − e−i(k+q)L . (52b)

Eliminating A and B from Equations 52a and 52b

[
gives

]
go

cos qL = cos kL+ sin kL. (53)
2kL

Since cos qL falls between +1 and −1, we can solve this equation as follows:
The above is a plot of the R.H.S. of Equation 53 [red line] and of the lines y = ±1 [blue lines]
with the dimensionless parameter go set to 13. A solution will only exist if the red line falls
between the two blue lines. The regions along the k-axis where this is the case correspond to
allowed energy bands, and are separated by disallowed gap regions. The edges of the bands
are given by the intersections of the red curve and the blue curves, and correspond to setting
qL = Nπ so that cos qL = ±1. For instance, in this example the first energy band runs from
kL ≈ ~22.73 to kL = π, with the actual energies given by E = k2 .

2m
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(a) As we mentioned above, regardless of the value of go, the top edge of an energy band
(or equivalently the bottom energy of an energy gap) will be at qL = Nπ, where N is
some integer not equal to zero.

(b) In the absence of a potential, ie for free particles, the two energy eigenfunctions with
qL = Nπ would simply be sin(Nπx/L) and cos(Nπx/L). Turning on the periodic
delta function potential with go > 0 gives these eigenfunctions a kink satisfying:

φ′E(nL+ g
)− φ′E(nL−

o
) = φE(nL), (54)

L

Since sin(Nπx/L) vanishes at each delta function, the right hand side becomes zero and
the slope becomes continuous, so the delta functions have no effect. Since cos(Nπx/L)
does not vanish at the delta functions, they induce kinks at the barriers. For N = 1:

6

!2 !1 1 2

!1

1

2

3

4

5

The blue eigenstate has zeros at the delta function sites and therefore does not “see”
the barriers. It is therefore a free particle state. The red eigenstate, however, does
see the delta functions and has kinks in its wavefunction. It corresponds to a higher
energy state because it has a greater curvature than the blue curve. Note that these
two eigenfunctions do not belong to the same band: the blue curve corresponds to the
top state of some energy band, while the red curve corresponds to the bottom edge
of the next energy band (equivalently, the blue curve is the bottom of the first gap,
while the red curve is the top of the first gap). However, as the strength of the barriers
goes to zero, the kinks go away and these two state – the top of the first band and the
bottom of the second – become sine and cosine wavefunctions with the same curvature,
and thus the same energy – ie, the gap closes and the bands merge.
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When go → ∞, the value of φE(nL) goes to zero in such a way that the RHS of 54
tends to a finite constant, and thus the jump of the derivative of the even function
represented in red in the previous plot remains finite. Therefore, in the go →∞ limit,
all the states vanish at x = nL, and between two delta functions they look like a free
particle with momentum Nπ/L. Note that, among these states, there is only one that
is a true momentum eigenstate, which is sin xNπ .

L

(c) At x = 0, the wavefunction must be continuous:

( )

φE(0−) = φE(0+), (55)

while its slope jumps because of the presence of the delta function:

go
φ′E(0+)− φ′E(0−) = φE(0). (56)

L

Since we are dealing with a periodic potential, we know from the preamble that

φE(x+ L) = eiqLφE(x). (57)

In this problem we are interested in the band edges qL = Nπ, so eiqL = (−1)N , so

φE(x+ L) = (−1)NφE(x). (58)

(d) Since the potential is zero away from the locations of the delta functions, we can say
~2 2

φE(x) = A sin(kx + θ) in the region 0 < x < L, where E = k . Our boundary
2m

conditions, however, require the evaluation of the wavefunction and its derivative at
places like x = 0−, which lies outside the region. We must therefore use Equation 58
to obtain the form of the eigenfunction for −L < x < 0. This yields{

(−1)NA sin [k(x+ L) + θ] for − L < x < 0
φE(x) = (59)

A sin(kx+ θ) for 0 < x < L.

We can now begin to impose our boundary conditions. The condition φ +
E(0 ) = φE(0−)

becomes

A sin θ = (−1)NA sin(kL+ θ) ⇒ sin θ = (−1)N sin(kL+ θ) . (60)

The jump condition requires us to find the derivatives

φ′E(0+) = Ak cos θ (61a)

φ′E(0−) = (−1)NAk cos(kL+ θ). (61b)

which give
g

cos θ − (− o
1)N cos(kL+ θ) = sin(θ) . (62)

kL
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(e) Our goal is now to find solutions to the boxed equations above,

sin θ = (−1)N sin(kL+ θ) (63a)
go

cos θ − (−1)N cos(kL+ θ) = sin(θ). (63b)
kL

Using sin(−x) = − sin(x), Equation 63a can be written as

sin θ = sin[(−1)N(kL+ θ)]. (64)

If we “simplify” the sin in Equation 64, we obtain

θ = (−1)N(kL+ θ) + 2Mπ, (65)

or
π − θ = (−1)N(kL+ θ) + 2Mπ, (66)

where the second Equation comes about by taking into account that sin x = sin(π−x).
By plugging in and evaluating, it is immediately clear that θ = 0 and qL = Nπ furnish
one set of solutions. However, it is illuminating (and will be useful shortly) to derive
this solution rather than check it. The following table shows the solutions we get from
the first and the second Equations above.

N even N odd

Eq. 65 kL = −2Mπ kL = −2θ + 2Mπ

Eq. 66 kL = −2θ − (2M − 1)π kL = (2M − 1)π

As we can see, half of the solutions come form kL = Mπ. Now we need to check
that only θ = 0 is compatible with these solutions, and we shall do it by considering
Equation 63b. Inserting in the latter kL = −2Mπ for N even, we obtain

g
cos θ − cos(− o

2Mπ + θ) = sin(θ), (67)
kL

and, since the LHS is zero, we obtain θ = 0, as expected. For N odd, plugging
kL = (2M − 1)π in Equation 63b we obtain

go
cos θ + cos((2M − 1)π + θ) = sin(θ), (68)

kL

recalling that cos(x − π) = − cos(x), we again obtain that the LHS is zero, and thus
θ = 0.
States with kL = Nπ and θ = 0 are of the form φE = (x) = A sin kx. These energy
eigenfunctions have the infinite-well energy E = N2 ~2π2

and vanish at the delta func-
2mL2

tions. These are precisely the states we argued in part (a) would appear at the top of
each energy band, ie at the bottom of each gap.
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(f) From the table in part (d), we know what the other half of the solutions are

kL = −2θ − (2M − 1)π for N even, (69)

kL = −2θ + 2Mπ for N odd, (70)

Proceeding as before, let’s take N even and recast into Equation 63b,

g
cos θ − cos(− o

θ − 2Mπ + π) = sin θ, (71)
kL

from which we can write
go

2 cos θ = sin θ, (72)
kL

thus
go

cot θ = , (73)
2kL

and, using 69,

cot

(
kL

2

)
= cot

( π−θ −Mπ +
2

) 1
= tan θ = (74)

cot θ

where we used

π
cot(x− π) = cot(x), cot

(
− x
)

= tan(x). (75)
2

Thus, finally

cot

(
kL

2

)
go

= . (76)
2kL

For N odd, we insert 70 in Equation 63b and get

g
cos θ + cos(− o

θ + 2Mπ) = sin θ, (77)
kL

and thus
go

cot θ = . (78)
2kL

Now, from Equation 70,

tan

(
kL

2

)
1

= tan(−θ +Mπ) = − tan θ = − , (79)
cot θ

where we used the first identity in 75, and thus

tan

(
kL

2

)
2kL

= − . (80)
go

These states appear at the bottom of the band.
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(g) Shown below are plots of Equations 76 and 80 for large values of go. The left hand
side of each equation is plotted in blue, while the right hand side is red:
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2 k L

go

One can see that as go → ∞, the solutions coming from these graphs (given by the
intersections between the red and blue lines) approach multiples of π from below (i.e.
as go goes up, the solution kL’s increase and approach multiples of π). Now, recall
from before that these solutions correspond to the bottom edges of energy bands, and
that the top edges are fixed at multiples of π irrespective of the value of go. We can
therefore conclude that as go is increased, the sizes of the bands go to zero. As go →∞,
the gaps get correspondingly larger, and asymptote to

π2~2
∆Egap =

[
(n+ 1)2 2

mL2
− n

2

]
, (81)

This makes sense because the eigenstates approach the free particle states and the
energy levels become degenerate in infinitely thin “bands” corresponding to the energy
levels of an infinite well as go →∞.
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(h) Here we show the analogous plots for small values of go:
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2 k L
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These solutions (which, remember, are the bottom edges of the bands) are seen to
approach multiples of π from above as we dial go → 0. In other words, as go → 0,
these band edges move away from the top edges of their own bands (which are given
by the next multiple of π), and approach the top edges of the bands below them. As
go → 0, the gaps therefore close completely, and all energies are allowed. This makes
sense, because with go = 0, the barriers are non-existent and we only have free particle
solutions, which form a continuum of energy states.
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