
Problem Set 8	 Solutions 
8.04 Spring 2013	 April 17, 2013 

Problem 1. (15 points) Superposition State of a Free Particle in 3D 

(a)	 (4 points) Recall from lecture that the energy eigenstates of a free particle in 3D are 
given by     

ψ = A exp i kk · kr = A exp [i (kxx + kyy + kzz)] ,	 (1) 

where A is some normalization constant. The energy is given by 

n2|kk|2 n2(k2 + k2 + k2)x y z
E = = .	 (2)

2m 2m 

In our case, we have 

π− 3 
2 

i(5y+z)/Lψ(kr, 0) = sin(3x/L)e	 (3a)
2L3/2 

π− 3   2 
i3x/L − e −i3x/L i(5y+z)/L= e e	 (3b)

4L3/2

π− 3   2	 
i(3x+5y+z)/L i(−3x+5y+z)/L= e + e ,	 (3c)

4L3/2

which we can immediately see is the superposition of two energy eigenstates, one with
kk = (3, 5, 1)/L and the other with kk = (−3, 5, 1)/L. In both cases the energy is 

n2|kk|2 35n2 

E = = ,	 (4)
2m 2mL2 

so this will be our result (with complete certainty) if we measure the energy at t = 0. 

(b)	 (4 points) Since the momentum eigenstates are the same as the energy eigenstates 
for a free particle, Equation 3c can also be viewed as a superposition of momentum 
eigenstates. Using kp = nkk, we can therefore say that the possible outcomes of a 
measurement of momentum are 

kp = (3n, 5n, n)/L and kp = (−3n, 5n, n)/L.	 (5) 

Note that in this case the probability of finding the particle in one of these momentum 
eigenstates is not simply |cn|2 = 1 This is because the wavefunction given in 

16π3L3 . 
Equation 3c is not properly normalized (which also implies that the |cn|2’s don’t sum to 
1), and indeed cannot be normalized. However, since we know that only two outcomes 
are possible, and that they are equally likely (since their momentum eigenfunctions 
are multiplied by the same coefficient), we can say that the probability of measuring 
either of the momentum in Equation 5 is 1

2 . 
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(c)	 (3 points) We know from before that an energy eigenstate evolves by a multiplicative 

−iEt/nphase factor e . Since both energy eigenstates in our superposition state (Equation 
3c) have the same energy, the time-dependent wavefunction is given by 

π− 3 
2 

3 
2π−

i(−3x+5y+z)/L −iEt/n = i(3x+5y+z)/L sin(3x/L)e
 i(5y+z/L)e
 −iEt/nψ(kr, t) =
 + e
e
 e
 ,

4L3/2	 2L3/2 

(6) 
where E = 35n2/(2mL2), as given in Equation 4. 

(d)	 (4 points) Measuring pk = (3n, 5n, n)/L immediately collapses the wavefunction into 
the corresponding momentum eigenstate. 

ψ(kr, 0) = A exp [i (3x + 5y + z) /L] .	 (7) 

Since this is also an energy eigenstate, the subsequent time evolution is once again 
given by 

−iEt/nψ(kr, t) = A exp [i (3x + 5y + z) /L] e ,	 (8) 

where again E = 35n2/(2mL2). We have left the normalization constant unspecified 
because the energy eigenstates of a free particle cannot be normalized. 
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Problem 2. (15 points) Degeneracies 

(a)	 i. (1 point) The quantum number which determines the energy eigenvalue E is the 
wavenumber k. We see that in one dimension to a given energy E corresponds h 
two wavenumbers k = ± 2mE , thus there are two linear independent sate for n2 

each energy eigenvalue. 

ii.	 (1 point) The Hamiltonian of the free particle in one dimension is invariant 
under the parity operation, i.e. x → −x. While the energy remains the same, the 
momentum operator transforms like the space coordinate: p̂ → −p̂. 

(b)	 i. (2 points) The allowed energy eigenvalues are simply the sum of the energy eigen
values of the two independent harmonic oscillators (since there is no interaction 
between them): 

1	 1 
Enx,ny = nωx nx + + nωy ny + = nω (nx + ny + 1) . (9)

2	 2 

ii.	 (2 points) Let’s make the notation n = nx + ny so that the energy eigenvalue is 
En = nω (n + 1). For a given eigenenergy En or principal quantum number n, nx 

and ny can take only the following values: 

nx = 0, 1, . . . , n − 1, n 
.	 (10) 

ny = n, n − 1, . . . , 0, 1 

So we see that there are n + 1 ways to distribute the value of n among nx and 
ny. Thus the ground state n = 0 is non degenerate, first excited state n = 1 is 
double degenerate, second excited state n = 2 is triple degenerated, and the third 
excited sate n = 3 is four times degenerated. 

iii.	 (1 point) Since the two independent oscillators have the same frequency, a rota
tion of the system around a axis perpendicular to the plane of the oscillators leaves 
the system unchanged, or in other words Lz component of angular momentum is 
conserved. 
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iv. (2 points) See the graph below (D stands for degeneracy):
 

(c)	 i. (1 point) Since the two harmonic oscillators are still independent, the energy 
eigenvalue is: 

1 1	 1 
Enx,ny (f) = nωx nx + + nωy ny + = nω (nx + ny + 1) + fnω nx + . 

2 2	 2 
(11) 

ii.	 (1 point) The system is no longer invariant under rotations, so the degeneracy 
is lifted. 

iii.	 (3 points) Plotted below are the first ten eigenenergies in units of nω as function 
of f (and the quantum numbers nx and ny): 

• n = nx + ny = 0 

nx =ny=0

-0.10 -0.05 0.05 0.10 0.15
Ε

0.98

1.00

1.02

1.04

E ÑΩ; n=nx+ny=0
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• n = nx + ny = 1 

nx =1 ny=0

nx =0 ny=1

-0.10 -0.05 0.05 0.10 0.15
Ε

1.90

1.95

2.00

2.05

2.10

2.15

E ÑΩ; n=nx+ny=1

• n = nx + ny = 2 

nx =2 ny=0

nx =1 ny=1

nx =0 ny=1

-0.10 -0.05 0.05 0.10 0.15
Ε

2.9

3.0

3.1

3.2

E ÑΩ; n=nx+ny=2
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• n = nx + ny = 3 

nx =3 ny=0

nx =2 ny=1

nx =1 ny=2

nx =0 ny=3

-0.10 -0.05 0.05 0.10 0.15
Ε

3.8

3.9

4.0

4.1

4.2

4.3

E ÑΩ; n=nx+ny=3

[Not required for full credit] In order to observe the crossings between various 
energy eigenvalues, below all ten eigenenergies are plotted on the same graph 
for a bigger range of f. All the red eigenenergies correspond to nx = 0, all the 
green eigenenergies correspond to nx = 1, all the black eigenenergies correspond 
to nx = 2, and the blue eigenenergy corresponds to nx = 3. 

nx =ny=0

nx =0 ny=1

nx =1 ny=0

nx =0 ny=1

nx =1 ny=1

nx =2 ny=0

nx =0 ny=3

nx =1 ny=2

nx =2 ny=1

nx =3 ny=0

-0.5 0.5 1.0
Ε

1

2

3

4

5

6

E ÑΩ

iv.	 (1 point) As pointed earlier a degeneracy in energy eigenstates indicates that 
the system remains invariant under some symmetry transformation, or equiva
lently there is some conserved quantity. To each quantum number describing 
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the conserved observable corresponds one energy eigenfunction, but since the en
ergy eigenvalue does not depend on the conserved quantum numbers the energy 
eigenfunctions are degenerated. 
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Problem 3. (20 points) Mathematical Preliminaries: Angular Momentum Operators 

(a) (8 points) First we deal with [L̂y, L̂z]: 

[L̂y, L̂z] = [ẑp̂x − x̂p̂z, x̂p̂y − ŷp̂x] (12a) 

= (ẑp̂x − x̂p̂z)(x̂p̂y − ŷp̂x) − (x̂p̂y − ŷp̂x)(ẑp̂x − x̂p̂z) (12b) 

= ẑp̂xx̂p̂y − x̂p̂zx̂p̂y − ẑp̂xŷp̂x + x̂p̂zŷp̂x − x̂p̂yẑp̂x + x̂p̂yx̂p̂z + ŷp̂xẑp̂x − ŷp̂xx̂p̂z (12c) 

=(−x̂p̂zx̂p̂y + x̂p̂yx̂p̂z) + (ŷp̂xẑp̂x − ẑp̂xŷp̂x) + (ẑp̂xx̂p̂y − x̂p̂yẑp̂x) + (x̂p̂zŷp̂x − ŷp̂xx̂p̂z).(12d) 

The terms in the first two sets of parentheses are zero, because all the operators within
 
a term commute with each other. For example,
 

−x̂p̂zx̂p̂y + x̂p̂yx̂p̂z = −x̂2 p̂zp̂y + x̂ 2 p̂yp̂z = −x̂2 p̂zp̂y + x̂ 2 p̂zp̂y = 0, (13) 

because [x̂a, x̂b] = 0, [p̂a, p̂b] = 0, and[x̂a, p̂b] = inδab. The remaining terms can be
 
rewritten as follows:
 

ẑp̂xx̂p̂y − x̂p̂yẑp̂x = ẑp̂xx̂p̂y − x̂ẑp̂yp̂x = ẑp̂xx̂p̂y − ẑx̂p̂xp̂y = −ẑ (x̂p̂x − p̂xx̂) p̂y = −inẑp̂y," -v " 
=[x̂,p̂x] 

(14)
 
where we have made liberal use of the fact that the position and momentum commute
 
unless they refer to the same coordinate (i.e. the same “x, y, or z”). Similarly,
 

x̂p̂zŷp̂x − ŷp̂xx̂p̂z = (x̂p̂x − p̂xx̂)p̂zŷ = inp̂zy. ˆ (15) 

Putting everything back together again, we get 

[L̂y, L̂z] = in(ŷp̂z − ẑp̂y) = inL̂x. (16) 

One way to compute [ L̂z, L̂x] and [L̂x, L̂y] would be to do the algebra explicitly, much
 
like we did just now for [L̂y, L̂z]. An easier way, however, would be to make the following
 
observation. If we look at the definition of the angular momentum operators,
 

L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z, L̂z = x̂p̂y − ŷp̂x (17) 

ˆ ˆwe see that making the replacements x → y, y → z, and z → x takes Lx → Ly,
 
L̂y → L̂z, and L̂z → L̂x. There is nothing mysterious about this, since x, y, and z are
 
merely labels for the three coordinate axes, and we chose the replacements carefully so
 
that the right-handedness of the coordinate system was preserved. Performing these
 
replacements on Equation 16 yields 

[L̂z, L̂x] = inL̂y and [L̂x, L̂y] = inL̂z. (18) 
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(b) (7 points) We now consider the total angular momentum operator L̂2 = L̂2 + L̂y 
2 + L̂2 .x z

The commutator of this operator with L̂z is 

[L̂z, L̂
2] = [L̂z, L̂x 

2 + L̂y 
2 + L̂z

2] = [ L̂z, L̂x
2 ] + [L̂z, L̂y

2] + [L̂z, L̂z
2] = [ L̂z, L̂x

2 ] + [L̂z, L̂y
2]. (19) 

The first term can be written as 

[L̂z, L̂
2 ] = L̂zL̂

2 − L̂2 L̂z = L̂zL̂
2 − L̂xL̂zL̂x + L̂xL̂zL̂x − L̂2 L̂z (20a)x x x x x 

= (L̂zL̂x − L̂xL̂z)L̂x + L̂x(L̂zL̂x − L̂xL̂z) (20b) 

= [L̂z, L̂x]L̂x + L̂x[L̂z, L̂x] = in(L̂yL̂x + L̂xL̂y). (20c) 

Similarly, we have 

[L̂z, L̂y
2] = L̂zL̂y 

2 − L̂y 
2L̂z = L̂zL̂y 

2 − L̂yL̂zL̂y + L̂yL̂zL̂y − L̂y 
2L̂z (21a) 

= (L̂zL̂y − L̂yL̂z)L̂y + L̂y(L̂zL̂y − L̂yL̂z) (21b) 

= [L̂z, L̂y]L̂y + L̂y[L̂z, L̂y] = −in(L̂yL̂x + L̂yL̂x). (21c) 

The two terms cancel, so we get 
[L̂z, L̂

2] = 0. (22) 

As we argued above, x, y, and z are simply labels for the three coordinate axes. Since 
their labeling is arbitrary, and L̂2 is unaffected if we switch them, we can say without 
further calculation that 

[L̂x, L̂
2] = 0 and [L̂y, L̂

2] = 0. (23) 

(c) (5 points) Let L̂− = L̂x − iL̂y and L̂+ = L̂x + iL̂y. Then 

[L̂2 , L̂±] = [L̂2 , L̂x ± iL̂y] = [L̂2 , L̂x] ± i[L̂2 , L̂y] = 0, (24) 

and 

[L̂z, L̂±] = [ L̂z, L̂x ± iL̂y] = [L̂z, L̂x] ± i[L̂z, L̂y] = inL̂y ± nL̂x = ±nL̂±. (25) 

Consider an eigenstate φ ,m of both L̂z and L̂2 such that 

L̂zφ ,m = nmφ ,m, L̂2φ ,m = n2Q φ ,m. (26) 

The commutation relation (25) tells us that 

L̂zL̂±φ ,m = L̂±L̂zφ ,m + [L̂z, L̂±]φ ,m = n(m ± 1)L̂±φ ,m, (27) 

thus L̂±φ ,m is an eigenstate of L̂z with eigenvalue n(m±1). Likewise, the commutation 
relation (24) tells us that 

L̂2L̂±φ ,m = L̂±L̂
2φ ,m + [L̂2 , L̂±]φ ,m = n2Q L̂±φ ,m, (28) 

from which we infer that L̂±φ ,m is also an eigenstate of L̂2 and it has the same 
eigenvalue of φ ,m. 
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Problem Set 8 Solutions 
8.04 Spring 2013 April 17, 2013 

Problem 4. (15 points) Mathematical Preliminaries: Eigenfunctions of L̂2 and L̂z 

(a) (5 points) For the angular parts of a wavefunction, the norm of a Ψ(θ, φ) is given by  2π  π 

(Ψ|Ψ) = dφ sin θdθ|Ψ|2 . (29) 
0 0 

Here we have  
1 1 

Y0,0 = ⇒ |Y0,0|2 = (30a)
4π 4π 

3 3 
Y1,0 = cos θ ⇒ |Y1,0|2 = cos 2 θ (30b)

4π 4π 
3 3 

Y1,±1 =  sin θe±iφ ⇒ |Y1,±1|2 = sin2 θ (30c)
8π 8π 

So:  2π  π  2π  π1 
(Y0,0|Y0,0) = dφ sin θdθ|Y0,0|2 = dφ sin θdθ = 1 (31a)

4π0 0 0 0 2π  π  2π  π3 
(Y1,0|Y1,0) = dφ sin θdθ|Y1,0|2 = dφ sin θdθ cos 2 θ = 1 (31b)

4π0 0 0 0 2π  π  2π  π3 
(Y1,±1|Y1,±1) = dφ sin θdθ|Y1,±1|2 = dφ sin θdθ sin2 θ = 1, (31c)

8π0 0 0 0 

where the last two integrals can be evaluated by making the substitution u ≡ cos θ. 
We now check for orthogonality: 

√ √ 2π  π  π3 3 
(Y0,0|Y1,0) = dφ sin θdθ cos θ = sin 2θdθ = 0 (32a) 

4π 40 0 0  
3 
 2π π 

(Y0,0|Y1,±1) = dφ sin θdθ sin θe±iφ (32b)
32π2

0 0  2π  π 
±iφdφ=

3 
e sin2 θdθ = 0 (32c)

32π2
0 0" -v "  2π 

=0  π3 
(Y1,0|Y1,±1) =  √ dφ sin θdθ cos θ sin θe±iφ (32d) 

32π2
0 0 2π  π 

=  √ 
3 

e ±iφdφ sin2 θ cos θdθ = 0, (32e) 
32π2

0 0" -v " 
=0
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Note that we these three integrals we have exhausted all possible combinations. For 
example, it is unnecessary for us to check (Y1,0|Y0,0) because 

2π π 2π π ∗ 

(Y1,0|Y0,0) = dφ sin θdθY 1
∗ 
,0Y0,0 = dφ sin θdθY 0

∗ 
,0Y1,0 = (Y0,0|Y1,0) ∗ = 0, 

0 0 0 0 
(33) 

so if (ΨA|ΨB) = 0, then (ΨB|ΨA) is automatically also zero. 

(b)	 (4 points) If the spherical harmonics are eigenfunctions of L̂2 and L̂z, then they must 
satisfy the following eigenvalue equations: 

1	 ∂ ∂ 1 ∂2 

L̂2Ψ = λL2 Ψ ⇒ −n2 sin θ + Ψ = λL2 Ψ (34a)
sin θ ∂θ ∂θ sin2 θ ∂φ2 

∂Ψ
L̂zΨ = λLz Ψ ⇒ −in = λLz Ψ.	 (34b)

∂φ 

Plugging the spherical harmonics into these equations, we see that they are indeed 
eigenfunctions of L̂2 and L̂z, with eigenvalues 

• Y0,0: λL2 = 0 and λLz = 0. 

• Y1,0: λL2 = 2n2 and λLz = 0. 

• Y1,±1: λL2 = 2n2 and λLz = ±n. 

(c)	 (6 points) From class we know that 

L̂± = ne ±iφ(∂θ ± cot θ∂φ). (35) 

We shall now follow the strategy learnt in class to obtain Yl,l and work out Y42,−42. 
First, we require 

−i42φY42,−42 = P42,−42(θ)e . (36) 

Imposing 
L̂−Y42,−42 = ne −iφ(∂θ − 42 cot θ)P42,−42(θ)e 

−i42φ = 0, (37) 

we find 
−i42φY42,−42 = cl,l(sin θ)42 e , (38) 

and thus, 

Y42,−41 = L̂+Y42,−42 ∝ e iφ(∂θ + cot θ∂φ)(sin θ)42 e −i42φ ∝ sin41 θ cos θe−i41φ , (39) 

and the dependence on θ and φ is completely determined. To find the normalization 
factor c42,−41, we impose 

2π π 

dφ dθ sin θ|c42,−41 sin
41 θ cos θe−i41φ|2 = 1. (40) 

0 0 

Using Mathematica to work out the integral, we find 

2π π 

dφ dθ sin θ| sin41 θ cos θe−i41φ|2 = 
0 0 
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∫ ∫ (∫ ∫ )

( )

∫ ∫

∫ ∫



 

 
π 240
 

= 2π dθ sin83 θ cos 2 θ = 2π , (41)

374606902236028199511433275
0 

and thus
 

374606902236028199511433275
 
Y42,−41 =

241π 
sin41 θ cos θe−i41φ . (42) 
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Problem 5. (20 points) Angular Momenta and Uncertainty 

(a)	 (5 points) Since Ψ ∝ Ylm is a normalized eigenstate of L̂2 and L̂z, we know that 

L̂2Ψ = n2l(l + 1)Ψ and L̂zΨ = nmΨ. (43) 

To find (Lx) and (Ly), we can make use of the operators L̂+ and L̂−, which are defined 
as 

L+ = Lx + iLy and L− = Lx − iLy, (44) 

so 
L+ + L−	 L+ − L−

Lx = and Ly = .	 (45)
2	 2i 

We therefore have 

Y ∗	 Y ∗(Lx) =
1 

Ψ ∗ (L+ + L−)ΨdΩ ∼ lmL+YlmdΩ + lmL−YlmdΩ (46a) 
2 

Y ∗	 Y ∗∼	 Yl,m−1dΩ = 0, (46b)lmYl,m+1dΩ + lm

where in the last equality we have used the fact that the spherical harmonics are 
orthonormal, that is 

(Ylm|Yl m ) = δll δmm
 ,	 (47) 

so only if the l’s and m’s both match do we get a non-zero answer. Alternatively, we 
could have used notation that is somewhat more compact: 

1(Lx) = [(Ψ|L+Ψ)+(Ψ|L+Ψ)] ∼ (Ylm|L+Ylm)+(Ylm|L+Ylm) ∼ (Ylm|Yl,m+1)+(Ylm|Yl,m−1) = 0. 
2

(48) 
The steps in Equation 48 match those in Equations 46a and 46b exactly, and it is a 
good exercise to make sure you can translate between the different notations. For (Ly), 
we similarly have 

1(Ly) = [(Ψ|L+Ψ)−(Ψ|L+Ψ)] ∼ (Ylm|L+Ylm)−(Ylm|L+Ylm) ∼ (Ylm|Yl,m+1)−(Ylm|Yl,m−1) = 0. 
2i

(49) 

(b)	 (6 points) To find (L̂x
2 ) and (L̂y

2), we note that nothing we have done has broken the 

symmetry between the x and y axes. Our wavefunction is an eigenstate of L̂z, but 
nothing we have done so far has made a distinction between x and y. We can thus 
immediately say that (L̂2 

x) = (L̂2 
y), and in this case only (it is not true for a general 

state): 

(L̂2) − (L̂2 
z) (L̂2) = (L̂2 ) + (L̂2) + (L̂2) ⇒ (L̂2) = 2(L̂2 ) + (L̂2) ⇒ (L̂2 ) = .x y z	 x z x 2 
(50) 
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Thus, 

(Ψ|L̂2Ψ) − (Ψ|L̂2Ψ) l(l + 1)n2(Ψ|Ψ) − m2n2(Ψ|Ψ) n2 
z(L̂2 ) = (Ψ|L̂2 Ψ) = = = [l(l+1)−m 2],x x 2 2 2 

(51) 
where the last equality followed from the fact that Ψ is normalized. In conclusion, 
then, 

n2 

L2 L2(ˆ ) = (ˆ ) = [l(l + 1) − m 2]. (52)x y 2 
If you’re uncomfortable with the symmetry argument, here’s a different way to ap
proach the problem. The operator L̂2 

x can be written as 

L̂2 1
(ˆ

1
(L̂2 + ˆ ˆ ˆ L2 

x = L+ + L̂−)(L̂+ + L̂−) = + L−L+ + L̂+L− + ˆ
−). (53)

2 4

The first and last terms are of no consequence because when we “sandwich” them 
between Ψ’s to find the expectation value we get zero from orthonomality: 

L2 L2(Ψ|ˆ±Ψ) ∝ (Ylm| ̂ ±Ylm) ∝ (Ylm|Yl,m±2) = 0. (54) 

This means 
1 

L2 ˆ ˆ(Ψ| ̂ Ψ) = (Ψ| ̂ L+Ψ) + (Ψ|ˆ L−Ψ) (55)x L− L+
4
 

We can deal with what’s left by doing a little commutator algebra:
 

L̂±L̂ = (L̂x ± iL̂y)(L̂x iL̂y) = L̂x 
2 + L̂y 

2 ± iL̂yL̂x iL̂xL̂y (56a) 

= L̂2 − L̂z 
2 i[L̂x, L̂y] = L̂2 − L̂z 

2 ± nL̂z, (56b) 

where in the last equality we used the fact that [L̂x, L̂y] = inL̂z. Thus,
 

ˆ L2 2 2 ± mn2
(Ψ|L̂±L Ψ) = (Ψ|L̂2Ψ) − (Ψ| ̂ Ψ) ± n(Ψ|L̂zΨ) = l(l + 1)n2 − m n , (57)z

because Ψ is an eigenstate of both L̂2 and L̂z. Putting everything together, we get
 

n2
 

(L̂2 ) = [l(l + 1) − m 2], (58)x 2 

just like before. A similar set of manipulations will give (L̂2) and verify that (L̂2 ) = y x

(L̂2).y

(c) (4 points) Since (L̂x) = 0 and (L̂2 
x) = (L̂2), we have yh h  n 

ΔLx = ΔLy = (L̂y
2) − ( L̂y)2 = (L̂y

2) = √ l(l + 1) − m2 . (59)
2


The left hand side of the proposed uncertainty relation thus reads
 

n2 

ΔLxΔLy = [l(l + 1) − m 2]. (60)
2 
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For a fixed l, this quantity is minimized when m is as large as possible i.e. when m = l. 
In such a situation, we have ΔLxΔLy = ln2/2. As for the right hand side, we have 

n mn2 

(Lz) = (61)
2 2 

This side is maximized precisely when the other side is minimzed (when m = l), and 
we get n (Lz) = ln2/2. In this case the two sides are equal, but for all other cases 

2 
(where m < l) the left hand side is greater. We can therefore conclude 

n 
ΔLxΔLy ≥ (Lz). (62)

2 

It is possible for all components of angular momentum to vanish simultaneously. If a 
particle is in an eigenstate with l = m = 0, then from the relationships we have proved 
in this question we have (L̂2 

x) = (L̂2 
y) = (L̂2 

z) = 0 as well as (L̂x) = (L̂y) = (L̂z) = 0, so 
we can say ΔLx = ΔLy = ΔLz = 0. 
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Problem Set 8	 Solutions 
8.04 Spring 2013	 April 17, 2013 

Problem 6. (20 points) Lifting the Degeneracy of the Quantum Rigid Rotor 

(a)	 (4 points) From the lecture notes we know that the spherical harmonics Ylm are the 
eigenfunctions of the angular momentum operator squared Lk 2: 

Lk 2Ylm = n2l(l + 1)Ylm.	 (63) 

Thus the energy eigenvalues of the quantum rigid rotator are: 

ˆ Lk 2 n2l(l + 1) n2l(l + 1) 
EYlm = Ylm = Ylm ⇒ Elm = . (64)

2I 2I	 2I 

(b)	 (4 points) Although we labeled the energy eigenvalues (64) by both l (controlling the 
total angular momentum) and m (controling the z-component of the angular momen
tum) quantum numbers, in the case of the rigid rotator – and indeed for all spherically 
symmetric systems – the energy eigenvalues do not depend on m. From the lecture 
notes we know that for a given l the quantum number m runs from +l to −l, so every 
energy eigenvalue is 2l + 1 degenerate. 

(c)	 (4 points) In this case, the energy operator is: 

2 2 k 2 2 Lk 2 2Lx 
2 + Ly Lz L2 − Lz Lz	 f Lz

E = + = + = − . (65)
2I 2I(1 + f) 2I 2I(1 + f) 2I 1 + f 2I 

The spherical harmonics Ylm are simultaneous eigenfunctions to both Lk 2 and Lz, so 
the energy eigenfunctions of the above quantum energy operator are again the Ylm:  	  

Lk 2 2	 n2 2 
ˆ	 f Lz n2l(l + 1) f m
EYlm = − Ylm = − Ylm

2I 1 + f 2I 2I 1 + f 2I 

n2l(l + 1) f n2m2 

⇒ Elm = − .	 (66)
2I 1 + f 2I 

16
 

[ ]



  

  

  
   

 
  

(d) (5 points) Let’s take a concrete example, say l = 1 and l = 2:
 

l=1,m=0

l=2,m=0

l=1,m=±1

l=2,m=±1

l=2,m=±2

-1.0 -0.5 0.0 0.5
Ε

5

10

15

20

E 
Ñ

2

2 I


The difference between two energy eigenstates El m and Elm is: 

n2[l (l + 1) − l(l + 1)] f n2 m2 − m 2 

El m − Elm =	 + . (67)
2I 1 + f 2I 

The first fraction on the right hand side of Eq. 67 is a constant and it does not affect 
the difference trend between the eigenenergies; the absolute value of the second fraction 
shows how close two eigenenergies can get since it depends on f. We always can assume 

2 ≥ m JJJJ2 (if not so exchange El m 
E

1+E 

JJ
JJ
that mE .
1+E 

JJ
JJ
↔ Elm ) and the important term remaining is 
E

1+E
E

1+E 
E

1−E
If f ≥ 0 then
 , but if f → −f ≤ 0 then
 , so in the former
 =
 =
 

case f ≥ 0 the two energies are closer. Classically it means that for a given Lz as the 
momentum of inertia Iz = I(1+f) increases the associated rotational energy decreases. 

(e)	 (3 points) From Eq. 66 we see that, for a given l, the ±m eigenfunctions share the 
same eigenvalue, so the degeneracy is only partially lifted. This is because the system 
energy is still invariant under Lz → −Lz, i.e. the rigid rotator starts to spin in the 
opposite direction but with the same angular momentum magnitude. The two opposite 
rotation directions correspond to +m and −m. 

We can break this invariance in many ways. For example, we might take Ix  Iy –= 
then we could tell whether we were spinning one way or the other by using the right 
hand rule with one finger along x and another along y. Unfortunately, the resulting 
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energy eigenvalues cannot be solved for in closed form (this is directly related to the 
fact that the totally asymmetric rotor, Ix = Iy = Iz, is classically chaotic). 

Instead, we can break this symmetry by adding to the energy operator the term, 

kL2 f L2 
zE = − + qBzLz . (68)

2I 1 + f 2I 

This term clearly breaks the symmetry Lz → −Lz. Such a term could arise if we, 
say, rubbed Prof. Evans against a cat to charge him with some static electricity, then 
turned on a magnetic field Bk = Bz ẑ in the z direction. The resulting energy eigenvalues 
are then, 

n2 2n2l(l + 1) f m
Elm = − + qBzn m (69)

2I 1 + f 2I 

Thus breaking the symmetry again lifts the degeneracy. 
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