Delta functions and complex exponentials

The magic of delta functions
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Let’s look at how delta functions work.
$Assumptions = {A >0, x0 >0, D> 0, Element[{A, x0, D}, Reals]}
{A>0,x0>0,D>0, (A|x0|D) € Reals}

We start with an unnormalized wave-function involving a delta function at xg.
T, = ADiracDelta[x - x0]
ADiracDelta[x - x0]

So, let’s try to normalize it.

Ainv = Integrate[Abs[T,] "2, {x, -Infinity, Infinity}]

rAbs [ADiracDelta[x - x0] ]2 dx

-

That's Mathematica’s way of saying “l can’t integrate that”. You can imagine why; the delta function is
defined so as to pick out the value of a function at x = Xy, but in this case the value it is “picking out” is the
of the other delta function.

rDiracDelta [x - x1] DiracDelta[x - x2] dx
-

DiracDelta[-x1 + x2]

We can't integrate 62, so we can’t normalize this wave-function. That sounds bad, but let’s go on and leave
Ain place. We can take the Fourier transform to find ¥, anyway.

@, = 1/Sqrt[2 n] FullSimplify[Integrate[Z, Exp[-Ikx], { X, - Infinity, Infinity}]]

A e—J‘L k x0

Va2

We get a complex exponential (a definite momentum state). However...

Ainv = Simplify[Integrate[Abs[&,]"2, {k, -Infinity, Infinity}]]
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... we can’t normalize this one either. Can we transform back to position space?

In[7]:= ~
! T, = FullSimplify[l / Sqrt[2 n] Integrate [Eu Exp[Ikx], { k, -Infinity, Infinity}]]

Integrate::idiv : Integral of ¢/***% does not converge on {—co, co}. >

A el k (x-x0)
[
® Aa2n

Out{7]=
V27
Not easily, but we can observe that the integral is infinite only when x = x, and doesn’t amount to much
away from this point, which sounds a lot like a delta function. Adding the fact that the oscillations become
very fast as D—-co, such that the integral over any dx away from Xy will go to zero by averaging over these
oscillations, the identification with a delta function becomes stronger.
In[8]:= ~
! T, = FullSimplify[l / Sqrt[2 x] Integrate[mu Exp[Ikx], {k, -D, D}]]
outsl= ASin[D (x-x0) ]
Tx -7 x0
In[9]:=
! Manipulate[Show[Plot [T, /. {A> 1, X0 > X9, D » 10" 1logD}, {x, -20, 20},
PlotRange -» {-1, 1}, Filling -» Axis, PerformanceGoal - Quality],
Plot[Abs[1/ (mx-7wx0)] /. {x0 > %0}, {x, -20, 20}, PlotRange » {-1, 1},
PlotStyle -» Red, Filling » None, PerformanceGoal - Quality]],
{{logD, 0.3}, O, 2, 0.1, Appearance - "Labeled"},
{{x%0, 2}, -10, 10, 0.1, Appearance - "Labeled"}]
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We can also note that if we assert f_ze"‘k(x"‘o) dk =218(x — Xo), we will have returned to ¥, (without ever
properly normalizing our wave functions). Alternately, we can show this by introducing a Gaussian envelope
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to help us with the integral, which we will later remove by taking the limit as D—oco (making the envelope
infinitely wide).

In[10]:= 5
' del = FullSimplify[re“‘ (x-x0) - (k/D)* dlk]/ (2 7)
I (x-x0)2
out[10]= De «
27
This is the now familiar transform of a Gaussian wave-packet, which will become infinitely narrow and tall as
D-wo. Using this like a delta function in an integral with some other smooth function...
In[11]:=
dellInt = Integrate[del (1 - x°2), {x, -Infinity, Infinity}]
Out[11]= 1_ i %02
D2
In[12]:=
delIntLim = Limit[delInt, D » Infinity]
out[12]=

1 - x02

.. we can see that it works as expected.
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