Physics 8.07: Electromagnetism II Prof. Alan Guth

LECTURE NOTES 1 VECTOR ANALYSIS

DEFINITION: A *vector* is a quantity that has magnitude and direction.

Examples: displacement, velocity, acceleration, force, momentum, electric and magnetic fields.

Vectors do not have position:

Same vector

OPERATIONS:

Magnitude: $\|\vec{A}\| \equiv$ magnitude of \vec{A} . (Here \equiv means "is defined to be".) Often A is used to denote ||A||.

Subtraction: $\vec{A} - \vec{B} \equiv \vec{A} + (-\vec{B})$.

Multiplication by a scalar: $2 \times / = /$.

Property— Distributive: $a(\vec{A} + \vec{B}) = a\vec{A} + a\vec{B}$.

September 5, 2012

Dot product of two vectors: $\vec{A} \cdot \vec{B} \equiv |\vec{A}| |\vec{B}| \cos \theta$, where θ is the angle between \vec{A} and \vec{B} :

Properties:

Rotational invariance. The value of the dot product does not change if both of the vectors are rotated together.

Cummutative: $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$.

Distributive: $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$.

Scalar multiplication: $(a\vec{A}) \cdot \vec{B} = a(\vec{A} \cdot \vec{B}).$

Query: Why $\cos \theta$??? If I defined a Guth-dot product by

$$\vec{A} \cdot \vec{B} \Big|_{\text{Guth}} \equiv |\vec{A}| |\vec{B}| \sin \theta ,$$

and hired a really good advertising agency, could my product (note the pun!) compete?

Tentative answer: Maybe a really good advertising agency can do anything, but I would have a serious marketing problem. My dot product would not be distributive. In fact, one can show that if $\vec{A} \cdot \vec{B}$ obeys rotational invariance and the distributive law, then

$$\vec{A} \cdot \vec{B} = \mathrm{const} |\vec{A}| |\vec{B}| \cos \theta$$
.

We'll come back to this later.

Cross product of two vectors:

$$\vec{A} \times \vec{B} \equiv |\vec{A}| |\vec{B}| \sin \theta \, \hat{n} \; ,$$

where \hat{n} is a unit vector perpendicular to \vec{A} and perpendicular to \vec{B} . The choice of the two (opposite) directions that are perpendicular to both \vec{A} and \vec{B} is determined by the right-hand rule:

(Source: Modified from chortle.ccsu.edu/vectorlessons/vch12/rightHandRule.gif.)

Properties:

Rotational invariance: If both vectors are rotated by the same rotation R, then the result of the cross product is also rotated by R.

Anticommutative: $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$. Distributive: $\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$.

Scalar multiplication: $(a\vec{A}) \times \vec{B} = a(\vec{A} \times \vec{B}).$

Query: Why $\sin \theta$???

Answer: Again, the function of θ is required for rotational invariance and distributivity. If these two properties hold, then one can show that

$$\vec{A} \times \vec{B} = \text{const}|\vec{A}||\vec{B}|\sin\theta\,\hat{n}$$

COMPONENT FORM:

$$\vec{A} = A_x \hat{e}_x + A_y \hat{e}_y + A_z \hat{e}_z \; ,$$

where \hat{e}_x is a unit vector in the direction of the positive x-axis. (Various notations are in use. Griffiths uses \hat{x} , \hat{y} , and \hat{z} , and many other books use \hat{i} , \hat{j} , and \hat{k} .)

Operations:

Vector addition:

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{e}_x + (A_y + B_y)\hat{e}_y + (A_z + B_z)\hat{e}_z$$

Vector dot product:

$$\vec{A} \cdot \vec{B} = (A_x \hat{e}_x + A_y \hat{e}_y + A_z \hat{e}_z) \cdot (B_x \hat{e}_x + B_y \hat{e}_y + B_z \hat{e}_z)$$
$$\hat{e}_x \cdot \hat{e}_x = \hat{e}_y \cdot \hat{e}_y = \hat{e}_z \cdot \hat{e}_z = 1 ,$$

and $\hat{e}_x \cdot \hat{e}_y = 0$, as does the dot product of any two basis vectors.

$$\therefore \vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Return to query: why $\cos \theta$???

Rotational invariance $\implies \hat{e}_x \cdot \hat{e}_x = \hat{e}_y \cdot \hat{e}_y = \hat{e}_z \cdot \hat{e}_z = \text{const.}$

What about $\hat{e}_x \cdot \hat{e}_y$?: Rotational invariance also implies that

$$\hat{e}_x \cdot \hat{e}_y = \hat{e}_x \cdot (-\hat{e}_y) ,$$

since the pair $(\hat{e}_x, -\hat{e}_y)$ can be obtained from the pair (\hat{e}_x, \hat{e}_y) by rotating both vectors 180° about the *x*-axis:

Thus $\hat{e}_x \cdot \hat{e}_y + \hat{e}_x \cdot (-\hat{e}_y) = 2\hat{e}_x \cdot \hat{e}_y$. But then the distributive law implies that

$$\hat{e}_x \cdot \hat{e}_y + \hat{e}_x \cdot (-\hat{e}_y) = \hat{e}_x \cdot (\hat{e}_y + (-\hat{e}_y)) = \hat{e}_x \cdot \vec{0} = 0$$

Similarly the dot product of any two distinct basis vectors must vanish, so

$$\vec{A} \cdot \vec{B} = \text{const} \left(A_x B_x + A_y B_y + A_z B_z \right) \,.$$

This had better be equivalent to $\operatorname{const} |\vec{A}| |\vec{B}| \cos \theta$, but we can see it explicitly by using the rotational invariance to orient \vec{A} along the positive x-axis, so $A_x = |\vec{A}|$, and $A_y = A_z = 0$. Then the above formula gives $\vec{A} \cdot \vec{B} = \operatorname{const} A_x B_x$, but $B_x = |\vec{B}| \cos \theta$, where θ is the angle between \vec{B} and the x-axis, but that is also the angle between \vec{B} and \vec{A} . Vector cross product:

$$\vec{A} \times \vec{B} = (A_x \hat{e}_x + A_y \hat{e}_y + A_z \hat{e}_z) \times (B_x \hat{e}_x + B_y \hat{e}_y + B_z \hat{e}_z) ,$$

where

$$\hat{e}_x \times \hat{e}_x = \hat{e}_y \times \hat{e}_y = \hat{e}_z \times \hat{e}_z = 0 ,$$

and

 $\hat{e}_x \times \hat{e}_y = \hat{e}_z$, and cyclic permutations,

 $\hat{e}_y \times \hat{e}_z = -\hat{e}_z$, and cyclic permutations.

Expanding,

$$\vec{A} \times \vec{B} = (A_x B_y - A_y B_x)\hat{e}_z + (A_y B_z - A_z B_y)\hat{e}_x + (A_z B_x - A_x B_z)\hat{e}_y \ .$$

Equivalently, one can write

$$\vec{A} \times \vec{B} = \det \begin{pmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{pmatrix} .$$

8.07 Electromagnetism II ﷺ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.