MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Physics 8.07: Electromagnetism II
September 5, 2012
Prof. Alan Guth

LECTURE NOTES 1 VECTOR ANALYSIS

DEFINITION: A vector is a quantity that has magnitude and direction.
Examples: displacement, velocity, acceleration, force, momentum, electric and magnetic fields.

Vectors do not have position:

OPERATIONS:
Magnitude: $\|\vec{A}\| \equiv$ magnitude of \vec{A}. (Here \equiv means "is defined to be".) Often A is used to denote $\|\vec{A}\|$.

Negation:

Addition:

Subtraction: $\vec{A}-\vec{B} \equiv \vec{A}+(-\vec{B})$.

Multiplication by a scalar:

Property- Distributive: $a(\vec{A}+\vec{B})=a \vec{A}+a \vec{B}$.

Dot product of two vectors: $\vec{A} \cdot \vec{B} \equiv|\vec{A}||\vec{B}| \cos \theta$, where θ is the angle between \vec{A} and \vec{B} :

Properties:
Rotational invariance. The value of the dot product does not change if both of the vectors are rotated together.
Cummutative: $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$.
Distributive: $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$.
Scalar multiplication: $(a \vec{A}) \cdot \vec{B}=a(\vec{A} \cdot \vec{B})$.
Query: Why $\cos \theta$??? If I defined a Guth-dot product by

$$
\left.\vec{A} \cdot \vec{B}\right|_{\text {Guth }} \equiv|\vec{A}||\vec{B}| \sin \theta
$$

and hired a really good advertising agency, could my product (note the pun!) compete?

Tentative answer: Maybe a really good advertising agency can do anything, but I would have a serious marketing problem. My dot product would not be distributive. In fact, one can show that if $\vec{A} \cdot \vec{B}$ obeys rotational invariance and the distributive law, then

$$
\vec{A} \cdot \vec{B}=\mathrm{const}|\vec{A}||\vec{B}| \cos \theta
$$

We'll come back to this later.

Cross product of two vectors:

$$
\vec{A} \times \vec{B} \equiv|\vec{A}||\vec{B}| \sin \theta \hat{n}
$$

where \hat{n} is a unit vector perpendicular to \vec{A} and perpendicular to \vec{B}. The choice of the two (opposite) directions that are perpendicular to both \vec{A} and \vec{B} is determined by the right-hand rule:

(Source: Modified from chortle.ccsu.edu/vectorlessons/vch12/rightHandRule.gif.)
Properties:
Rotational invariance: If both vectors are rotated by the same rotation R, then the result of the cross product is also rotated by R.
Anticommutative: $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$.
Distributive: $\vec{A} \times(\vec{B}+\vec{C})=\vec{A} \times \vec{B}+\vec{A} \times \vec{C}$.
Scalar multiplication: $(a \vec{A}) \times \vec{B}=a(\vec{A} \times \vec{B})$.
Query: Why $\sin \theta ? ? ?$
Answer: Again, the function of θ is required for rotational invariance and distributivity. If these two properties hold, then one can show that

$$
\vec{A} \times \vec{B}=\text { const }|\vec{A}||\vec{B}| \sin \theta \hat{n}
$$

COMPONENT FORM:

$$
\vec{A}=A_{x} \hat{e}_{x}+A_{y} \hat{e}_{y}+A_{z} \hat{e}_{z}
$$

where \hat{e}_{x} is a unit vector in the direction of the positive x-axis. (Various notations are in use. Griffiths uses \hat{x}, \hat{y}, and \hat{z}, and many other books use $\hat{\imath}, \hat{\jmath}$, and \hat{k}.)

Operations:
Vector addition:

$$
\vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \hat{e}_{x}+\left(A_{y}+B_{y}\right) \hat{e}_{y}+\left(A_{z}+B_{z}\right) \hat{e}_{z}
$$

Vector dot product:

$$
\begin{gathered}
\vec{A} \cdot \vec{B}=\left(A_{x} \hat{e}_{x}+A_{y} \hat{e}_{y}+A_{z} \hat{e}_{z}\right) \cdot\left(B_{x} \hat{e}_{x}+B_{y} \hat{e}_{y}+B_{z} \hat{e}_{z}\right) . \\
\hat{e}_{x} \cdot \hat{e}_{x}=\hat{e}_{y} \cdot \hat{e}_{y}=\hat{e}_{z} \cdot \hat{e}_{z}=1,
\end{gathered}
$$

and $\hat{e}_{x} \cdot \hat{e}_{y}=0$, as does the dot product of any two basis vectors.

$$
\therefore \vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} .
$$

Return to query: why $\cos \theta$???
Rotational invariance $\Longrightarrow \hat{e}_{x} \cdot \hat{e}_{x}=\hat{e}_{y} \cdot \hat{e}_{y}=\hat{e}_{z} \cdot \hat{e}_{z}=$ const.
What about $\hat{e}_{x} \cdot \hat{e}_{y}$?: Rotational invariance also implies that

$$
\hat{e}_{x} \cdot \hat{e}_{y}=\hat{e}_{x} \cdot\left(-\hat{e}_{y}\right),
$$

since the pair $\left(\hat{e}_{x},-\hat{e}_{y}\right)$ can be obtained from the pair $\left(\hat{e}_{x}, \hat{e}_{y}\right)$ by rotating both vectors 180° about the x-axis:

Thus $\hat{e}_{x} \cdot \hat{e}_{y}+\hat{e}_{x} \cdot\left(-\hat{e}_{y}\right)=2 \hat{e}_{x} \cdot \hat{e}_{y}$. But then the distributive law implies that

$$
\hat{e}_{x} \cdot \hat{e}_{y}+\hat{e}_{x} \cdot\left(-\hat{e}_{y}\right)=\hat{e}_{x} \cdot\left(\hat{e}_{y}+\left(-\hat{e}_{y}\right)\right)=\hat{e}_{x} \cdot \overrightarrow{0}=0 .
$$

Similarly the dot product of any two distinct basis vectors must vanish, so

$$
\vec{A} \cdot \vec{B}=\operatorname{const}\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right) .
$$

This had better be equivalent to const $|\vec{A}||\vec{B}| \cos \theta$, but we can see it explicitly by using the rotational invariance to orient \vec{A} along the positive x-axis, so $A_{x}=|\vec{A}|$, and $A_{y}=A_{z}=0$. Then the above formula gives $\vec{A} \cdot \vec{B}=$ const $A_{x} B_{x}$, but $B_{x}=|\vec{B}| \cos \theta$, where θ is the angle between \vec{B} and the x-axis, but that is also the angle between \vec{B} and \vec{A}.

Vector cross product:

$$
\vec{A} \times \vec{B}=\left(A_{x} \hat{e}_{x}+A_{y} \hat{e}_{y}+A_{z} \hat{e}_{z}\right) \times\left(B_{x} \hat{e}_{x}+B_{y} \hat{e}_{y}+B_{z} \hat{e}_{z}\right)
$$

where

$$
\hat{e}_{x} \times \hat{e}_{x}=\hat{e}_{y} \times \hat{e}_{y}=\hat{e}_{z} \times \hat{e}_{z}=0
$$

and

$$
\begin{gathered}
\hat{e}_{x} \times \hat{e}_{y}=\hat{e}_{z}, \text { and cyclic permutations }, \\
\hat{e}_{y} \times \hat{e}_{z}=-\hat{e}_{z}, \text { and cyclic permutations } .
\end{gathered}
$$

Expanding,

$$
\vec{A} \times \vec{B}=\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{e}_{z}+\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{e}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{e}_{y}
$$

Equivalently, one can write

$$
\vec{A} \times \vec{B}=\operatorname{det}\left(\begin{array}{lll}
\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.07 Electromagnetism II

) Dom पर्व

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

