8.07 Lecture 35: December 7, 2012 ELECTROMAGNETIC WAVES

The Wave Equation in 1 Dimension:
The travelling wave:

$$
\begin{equation*}
f(z, t)=f(z-v t, 0) \equiv g(z-v t) \tag{1}
\end{equation*}
$$

But waves can move in both directions:

$$
\begin{equation*}
f(z, t)=g_{1}(z-v t)+g_{2}(z+v t) \tag{2}
\end{equation*}
$$

Differential equation for $f(z, t)$:

$$
\begin{align*}
\frac{\partial f}{\partial z} & =g_{1}^{\prime}(z-v t)+g_{2}^{\prime}(z+v t) \\
\frac{\partial^{2} f}{\partial z^{2}} & =g_{1}^{\prime \prime}(z-v t)+g_{2}^{\prime \prime}(z+v t) \tag{3}\\
\frac{\partial f}{\partial t} & =-v g_{1}^{\prime}(z-v t)+v g_{2}^{\prime}(z+v t) \\
\frac{\partial^{2} f}{\partial t^{2}} & =v^{2} g_{1}^{\prime}(z-v t)+v^{2} g_{2}^{\prime}(z+v t)
\end{align*}
$$

Wave equation:

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial z^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} f}{\partial t^{2}}=0 \tag{4}
\end{equation*}
$$

$$
\begin{align*}
f(z, t) & =A \cos [k(z-v t)+\delta] \\
& =A \cos [k z-\omega t+\delta], \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
v & =\frac{\omega}{k}=\text { phase velocity } \\
\omega & =\text { angular frequency }=2 \pi \nu \\
\nu & =\text { frequency } \\
\delta & =\text { phase (or phase constant) } \tag{6}\\
k & =\text { wave number } \\
\lambda & =2 \pi / k=\text { wavelength } \\
T & =2 \pi / \omega=\text { period } \\
A & =\text { amplitude. }
\end{align*}
$$

Any wave can be constructed by superimposing sinusoidal waves (Fourier's Theorem, aka Dirichlet's Theorem).
Complex Notation:
Let $\tilde{A}=A e^{i \delta}$. Then

$$
\begin{equation*}
f(z, t)=\operatorname{Re}\left[\tilde{A} e^{i(k z-\omega t)}\right] \tag{7}
\end{equation*}
$$

where we used

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{8}
\end{equation*}
$$

Conventions: drop "Re", and drop ~ on \tilde{A}.

$$
\begin{equation*}
f(z, t)=A e^{i(k z-\omega t)} \tag{9}
\end{equation*}
$$

General solution to wave equation:

$$
\begin{equation*}
f(z, t)=\int_{-\infty}^{\infty} A(k) e^{i(k z-\omega t)} \mathrm{d} k \tag{10}
\end{equation*}
$$

where $\omega / k=v, v=$ wave speed $=$ phase velocity.

Group Velocity and Phase Velocity:

Not in Griffith. In Jackson, pp. 324-325.
ω can sometimes depend on k : dispersion.
Consider a wave packet centered on k_{0} :

$$
\begin{align*}
\omega(k) & =\omega\left(k_{0}\right)+\frac{\mathrm{a} \omega}{\mathrm{~d} k}\left(k_{0}\right)\left(k-k_{0}\right)+\ldots \\
& =\omega\left(k_{0}\right)-k_{0} \frac{\mathrm{~d} \omega}{\mathrm{~d} k}+k \frac{\mathrm{~d} \omega}{\mathrm{~d} k}+\ldots \tag{11}
\end{align*}
$$

$$
\begin{gather*}
\omega(k)=\omega\left(k_{0}\right)+\frac{\mathrm{d} \omega}{\mathrm{~d} k}\left(k_{0}\right)\left(k-k_{0}\right)+\ldots \\
=\omega\left(k_{0}\right)-k_{0} \frac{\mathrm{~d} \omega}{\mathrm{~d} k}+k \frac{\mathrm{~d} \omega}{\mathrm{~d} k}+\ldots \tag{11}\\
f(z, t)=e^{i\left[\omega\left(k_{0}\right)-k_{0} \frac{\mathrm{~d} \omega}{\mathrm{~d} k}\right] t} \int_{-\infty}^{\infty} \mathrm{d} k A(k) e^{i k\left(z-\frac{\mathrm{d} \omega}{\mathrm{~d} k} t\right)} . \tag{12}
\end{gather*}
$$

The integral describes a wave which moves with

$$
\begin{equation*}
v_{\text {group }}=\frac{\mathrm{d} \omega}{\mathrm{~d} k}\left(k_{0}\right) \tag{13}
\end{equation*}
$$

Envelope moves with $v=v_{\text {group }}$.
Waves inside envelope move with $v_{\text {phase }}=v=\omega(k) / k$.
If $v_{\text {phase }}>v_{\text {group }}$, then waves appear at the left of the envelope and move forward through the envelope, disappearing at the right.

Electromagnetic Plane Waves

Maxwell Equations in Empty Space:

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{14}\\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

where $1 / c^{2} \equiv \mu_{0} \epsilon_{0}$. Manipulating,

$$
\begin{aligned}
\vec{\nabla} \times(\vec{\nabla} \times \vec{E}) & =\vec{\nabla} \underbrace{(\vec{\nabla} \cdot \vec{E})}_{=0}-\nabla^{2} \vec{E} \\
& =\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right)=-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{align*}
\vec{\nabla} \times(\vec{\nabla} \times \vec{E}) & =\vec{\nabla} \underbrace{(\vec{\nabla} \cdot \vec{E})}_{=0}-\nabla^{2} \vec{E} \\
& =\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right)=-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}, \tag{15}
\end{align*}
$$

So

$$
\begin{equation*}
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0 \tag{16}
\end{equation*}
$$

This is the wave equation in 3 dimensions. An identical equation holds for \vec{B} :

$$
\begin{equation*}
\nabla^{2} \vec{B}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0 \tag{17}
\end{equation*}
$$

Each component of \vec{E} and \vec{B} satisfies the wave equation. This implies that waves travel at speed c ! But the wave equation is not all: \vec{E} and \vec{B} are still related by Maxwell's equations.
Try

$$
\begin{equation*}
\vec{E}(\vec{r}, t)=\tilde{E}_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \hat{n}, \tag{18}
\end{equation*}
$$

where \tilde{E}_{0} is a complex amplitude, \hat{n} is a unit vector, and $\omega /|\vec{k}|=v_{\text {phase }}=c$. Then

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{E}=i \hat{n} \cdot \vec{k} E_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)}, \tag{19}
\end{equation*}
$$

so we require

$$
\begin{equation*}
\hat{n} \cdot \vec{k}=0 \quad \text { (transverse wave). } \tag{20}
\end{equation*}
$$

The magnetic field satisfies

$$
\begin{equation*}
\frac{\partial \vec{B}}{\partial t}=-\vec{\nabla} \times \vec{E}=-i \vec{k} \times \vec{E}=-i \vec{k} \times \hat{n} \tilde{E}_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \tag{21}
\end{equation*}
$$

Integrating,

$$
\begin{equation*}
\vec{B}=\frac{\vec{k}}{\omega} \times \hat{n} \tilde{E}_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \tag{22}
\end{equation*}
$$

so, remembering that $|\vec{k}|=\omega c$,

$$
\begin{equation*}
\vec{B}=\frac{1}{c} \hat{k} \times \vec{E} \tag{23}
\end{equation*}
$$

Energy and Momentum:

Energy density:

$$
\begin{equation*}
u=\frac{1}{2}\left[\epsilon_{0}|\vec{E}|^{2}+\frac{1}{\mu_{0}}|\vec{B}|^{2}\right] \tag{24}
\end{equation*}
$$

The \vec{E} and \vec{B} contributions are equal.

$$
\begin{align*}
& u=\epsilon_{0} E_{0}^{2} \underbrace{\cos ^{2}(k z-\omega t+\delta)}_{\text {averages to } 1 / 2}, \quad(\vec{k}=k \hat{z}) \\
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}=u c \hat{z} \tag{25}\\
& \mathcal{P}_{\mathrm{EM}}=\frac{1}{c^{2}} \vec{S}=\frac{u}{c} \hat{z} \\
& I \text { (intensity) }=\langle | \vec{S}| \rangle=\frac{1}{2} \epsilon_{0} E_{0}^{2}
\end{align*}
$$

Electromagnetic Waves in Matter

For linear, homogeneous materials, Maxwell's equations are unchanged except for the replacement $\mu_{0} \epsilon_{0} \rightarrow \mu \epsilon$. Define

$$
\begin{equation*}
n \equiv \sqrt{\frac{\mu \epsilon}{\mu_{0} \epsilon_{0}}}=\text { index of refraction. } \tag{26}
\end{equation*}
$$

Then

$$
\begin{equation*}
v=\text { phase velocity }=\frac{c}{n} \tag{27}
\end{equation*}
$$

When expressed in terms of \vec{E} and \vec{B}, everything carries over, with these substitutions:

$$
\begin{align*}
u & =\frac{1}{2}\left[\epsilon|\vec{E}|^{2}+\frac{1}{\mu}|\vec{B}|^{2}\right] \\
\vec{B} & =\frac{n}{c} \hat{k} \times \vec{E} \tag{28}\\
\vec{S} & =\frac{1}{\mu} \vec{E} \times \vec{B}=\frac{u c}{n} \hat{z}
\end{align*}
$$

Boundary Conditions, Transmission and Reflection

Image by MIT OpenCourseWare.

Alan Guth
Massachusetts Institute of Technology
8.07 Lecture 35, December 7, 2012

Boundary Conditions:

$$
\begin{align*}
\epsilon_{1} E_{1}^{\perp} & =\epsilon_{2} E_{2}^{\perp} & \vec{E}_{1}^{\|} & =\vec{E}_{2}^{\|}, \\
B_{1}^{\perp} & =B_{2}^{\perp} & \frac{1}{\mu_{1}} \vec{B}_{1}^{\|} & =\frac{1}{\mu_{2}} \vec{B}_{2}^{\|} . \tag{29}
\end{align*}
$$

Incident wave $(z<0)$:

$$
\begin{align*}
& \vec{E}_{I}(z, t)=\tilde{E}_{0, I} e^{i\left(k_{1} z-\omega t\right)} \hat{x} \\
& \vec{B}_{I}(z, t)=\frac{1}{v_{1}} \tilde{E}_{0, I} e^{i\left(k_{1} z-\omega t\right)} \hat{y} . \tag{30}
\end{align*}
$$

Transmitted wave $(z>0)$:

$$
\begin{align*}
\vec{E}_{T}(z, t) & =\tilde{E}_{0, T} e^{i\left(k_{2} z-\omega t\right)} \hat{x} \\
\vec{B}_{T}(z, t) & =\frac{1}{v_{2}} \tilde{E}_{0, T} e^{i\left(k_{2} z-\omega t\right)} \hat{y} \tag{31}
\end{align*}
$$

ω must be the same on both sides, so

$$
\begin{equation*}
\frac{\omega}{k_{1}}=v_{1}=\frac{c}{n_{1}}, \quad \frac{\omega}{k_{2}}=v_{2}=\frac{c}{n_{2}} . \tag{32}
\end{equation*}
$$

Reflected wave $(z<0)$:

$$
\begin{align*}
\vec{E}_{R}(z, t) & =\tilde{E}_{0, R} e^{i\left(-k_{1} z-\omega t\right)} \hat{x} \\
\vec{B}_{R}(z, t) & =-\frac{1}{v_{1}} \tilde{E}_{0, R} e^{i\left(-k_{1} z-\omega t\right)} \hat{y} . \tag{33}
\end{align*}
$$

Boundary conditions:

$$
\begin{gather*}
\vec{E}_{1}^{\|}=\vec{E}_{2}^{\|} \Longrightarrow \quad \tilde{E}_{0, I}+\tilde{E}_{0, R}=\tilde{E}_{0, T}, \tag{34}\\
\frac{1}{\mu_{1}} \vec{B}_{1}^{\|}=\frac{1}{\mu_{2}} \vec{B}_{2}^{\|} \Longrightarrow \frac{1}{\mu_{1}}\left(\frac{1}{v_{1}} \tilde{E}_{0, I}-\frac{1}{v_{1}} \tilde{E}_{0, R}\right)=\frac{1}{\mu_{2}} \frac{1}{v_{2}} \tilde{E}_{0, T} . \tag{35}
\end{gather*}
$$

Two equations in two unknowns: $\tilde{E}_{0, R}$ and $\tilde{E}_{0, T}$.
Solution:

$$
\begin{equation*}
\tilde{E}_{0, R}=\left|\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right| \quad \tilde{E}_{0, I} \quad E_{0, T}=\left(\frac{2 n_{1}}{n_{1}+n_{2}}\right) \tilde{E}_{0, I} . \tag{36}
\end{equation*}
$$

Alan Guth

MIT OpenCourseWare
http://ocw.mit.edu

8.07 Electromagnetism II

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

