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LECTURE NOTES 8
THE TRACELESS SYMMETRIC TENSOR EXPANSION

AND STANDARD SPHERICAL HARMONICS
These notes are an addendum to Lecture 14, Wednesday October 10, 2012. The

notes will describe a topic that I did not have time to include in the lecture: the relation
between the traceless symmetric tensor expansion and the standard spherical harmonics.

Using traceless symmetric tensors, we can expand any function of angle as

∞ ∞
F (n̂) =

∑
(�)

Ci n
1i2...i

n
�
ˆi1 ˆi2 . . . n̂i� ≡

∑
F�(n̂)

�=1 �=0 (8.1)

= C(0) + (1)
Ci n̂i +

(2)
Cij n̂in̂j +

(3)
Cijk n̂in̂jn̂k + . . . ,

where the (�)
Ci1i2...i� are traceless symmetric tensors, the indices i1, i2, . . . i� are summed

from 1 to 3 as Cartesian indices, and

n̂(θ, φ) = sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3 , (8.2)

where ê1, ê2, and ê3 can also be written as êx, êy, and êz.

In the more standard approach, an arbitrary function of (θ, φ) is expanded in spher-
ical harmonics:

∞ �

F (n̂) =
∑
�=1 m

∑
a�mY�m(θ, φ) . (8.3)

=−�

We have shown that

∇2
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θ Ci1i2...i n�

ˆi1 n̂i2 . . . n̂
�

i

]
(

�
= −�(�+ 1) )

Ci1i2...i n�
ˆi1 n̂i2 . . . n̂i� , (8.4)

where

∇2 1 ∂ ∂ 1 ∂2

θ =
(
sin θ + .

sin θ ∂θ ∂θ

)
sin2 (8.5)

θ ∂φ2

In the standard approach one would show that

∇2
θ Y�m(θ, φ) = −�(�+ 1)Y�m(θ, φ) , (8.6)

so � apparently has the same meaning in both formalisms. (I am not trying here to de-
rive the standard formalism, but instead I will simply adopt the equations from standard
textbooks, and show that we can express these functions in terms of traceless symmetric
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tensors. A good example of such a standard textbook is J.D. Jackson, Classical Elec-
trodynamics, 3rd Edition (John Wiley & Sons, 1999), Sections 3.1, 3.2, 3.5, and 3.6.
That means that there must be some particular traceless symmetric tensor, which we will
call (�,m)

Ci1...i Y�m θ, φ
�
which is equivalent to ( ). That is,

(�,m)
Ci1...i n̂i1 . . . n̂i� = Y�m(θ, φ�

) . (8.7)

Our goal is to construct (�,m)
Ci1...i� explicitly. We have already shown that the number of

linearly independent traceless symmetric tensors of rank � (i.e., with � indices) is given
by 2� + 1, which is not surprisingly equal to the number of Y�m functions for a given �.
The quantity m is an integer from −� to �, so there are 2�+ 1 possible values.

We consider first the case of azimuthal symmetry, where F (n̂) is invariant under
rotations about the z-axis, and hence independent of φ. In that case, within the standard
treatment, the most general function can be expanded in Legendre polynomials,

∞
F (n̂) =

∑
a�P�(cos θ) . (8.8)

�=0

The P� functions are the same as the Y�0 functions, except that they are normalized
differently: √

2�+ 1
Y�0(θ, φ) = P

4 �(cos θ) . (8.9)
π

The Legendre polynomials can be written explicitly using Rodrigues’ formula:

1
(

d �

P (x) =
) [

(x2 �
� 2� �! dx

− 1)
]
. (8.10)

In the traceless symmetric tensor formalism, the azimuthal symmetry case must be de-
scribed by traceless symmetric tensors that are invariant under rotations about the z-axis.
It is easiest to begin by thinking about � = 1, where we are seeking a tensor (1)

Ci . Since
(1)

Ci has one index, it is a vector, which is the same as a tensor of rank 1. It is obvious
that the only vector that is invariant under rotations about the z-axis is a vector that
points along the z axis. I will let ẑ be a unit vector in the z-direction (which I have also
called êz and ê3), and then for azimuthal symmetry we have

(1)
Ci = const ẑi , (8.11)

where ẑi = δi3 is the i’th component of ẑ. The resulting function of n̂ is then

F1(n̂) =
(1)

Ci n̂i = const ẑin̂i = const ẑ · n̂ = const cos θ , (8.12)
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which certainly agrees with P1(cos θ) = cos θ.

To generalize to arbitrary �, we can construct a tensor of rank � that is invariant
under rotations about the z-axis by considering the product ẑi1 ẑi2 . . . ẑi� . This is clearly
symmetric, but it is not traceless. However, we can make it traceless by taking its traceless
part, which I denote by curly brackets.

{ ẑi1 ẑi2 . . . ẑi� } ≡ traceless symmetric part of ẑi1 ẑi2 . . . ẑi� . (8.13)

The traceless symmetric part is constructed by starting with the original expression and
then subtracting terms proportional to one or more Kronecker δ-functions, where the
subtractions are uniquely determined by the requirement that the expression be traceless.
For example,

{ 1 } = 1

{ ẑi } = ẑi

{ ẑiẑj } = ẑiẑj − 1δij3
(8.14){ ẑ ẑ ẑ } = ẑ ẑ ẑ − 1

i j k i j k z
5 îδjk + ẑjδik + ẑkδij

{ ẑ z 1
i ĵ ẑkẑm } = ẑiẑj ẑk ẑm −

(
7

(
ẑiẑjδkm + ẑiẑkδmj

)
+ ẑiẑmδjk + ẑj ẑkδim

+ ẑj ẑmδik + ẑ 1
k ẑmδij + δijδkm + δikδjm35 + δimδjk ,

where the coefficients are all determined b

)
y the

(
requirement of tracelessness.

)
We will

argue later that Eq. (8.14) gives the only traceless symmetric tensors that are invariant
under rotations about the z-axis, and therefore the function

F�(n̂) = { ẑi1 . . . ẑi� } n̂i1 . . . n̂i� (8.15)

is the only function, up to a multiplicative constant, that is azimuthally symmetric and
satisfies ∇2

θ � � �

∇2
θP�(cos θ) = −�(�+ 1)P�(cos θ), we must have

P�(cos θ) = const{ ẑi1 . . . ẑi� } n̂i1 . . . n̂i� , (8.16)

where the constant is yet to be determined.

Both sides of Eq. (8.16) are polynomials in cos θ, where the highest power is cos� θ.
If we can find the coefficients of this highest power on each side of the equation, we
can determine the constant. On the right-hand side, the highest power comes entirely
from the ẑi1 . . . ẑi� term in { ẑi1 . . . ẑi� }, since all the other terms contain Kronecker δ-
functions which result in factors of the form n̂ · n̂ = 1, reducing the number of n̂ factors
available to give powers of cos θ. So, the leading term on the right-hand side is simply

F (n̂) = −�(�+1)F (n̂). Since P (cos θ) is azimuthally symmetric and satisfies
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const(ẑ · n̂)� = const cos� θ. For the left-hand side, we can use Rodrigues’ formula to
extract the highest power:

1
P�(x) = 2��!

(
d �

(x2 1)�
dx

) [ − ]
1

=
(

d
)� [

x2� + (lower powers)
2��! dx

�

]
1 d −1

=
( ) [

(2�)x2�−1 + (lower powers)
2��! dx

]
(8.17)

1
=

2��!

(
d
x

)�−2 [
(2�)(2�

d
− 1)x2�−2 + (lower powers)

1

]

= (2�)(2� 1) . . . (�+ 1)x� + (lower powers)
2��!

[ −
(2�)!

]
= x� + (lower powers) .

2�(�!)2

Matching these coefficients, we see that

(2�)!
P�(cos θ) = { ẑi1 . . . ẑi� } n̂ . . .

2�(�!) i2 1 n̂i� . (8.18)

Now we can return to the general case, in which there is no azimuthal symmetry,
and the expansion requires the spherical harmonics, Y�m. The Y�m are chosen to have a
very simple dependence on φ, namely

Y�m(θ, φ) ∝ eimφ . (8.19)

This property can be described in terms of how the functions transform under a rotation
of the coordinate system about the z-axis. Under a rotation by an angle ψ about the
z-axis, the angle φ changes by ψ, and Y�m changes by a factor eiψ. I have not been
careful here about specifying the sign of this rotation, because it will be easy to fix the
sign conventions at the end. The important point here is that if we want to match the
conventions of the spherical harmonics, we need to construct traceless symmetric tensors
that are modified by a rotation only by a multiplicative phase factor. That is, we are
looking for tensors that are complex, and that are eigenvectors of the rotation operator.

Naturally we begin by considering a vector (a tensor with one index, or a rank 1
tensor), which under a rotation about the z-axis transforms as

vx
′ = vx cosψ − vy sinψ

(8.20)
vy
′ = vx sinψ + vy cosψ .
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We thus seek an eigenvector of the matrix

R =
(
cosψ − sinψ
sinψ cosψ

)
. (8.21)

The eigenvalues λ of the matrix are determined by the characteristic equation

det(R − λI) = 0 , (8.22)

where I is the identity matrix, which can be expanded as

det
(
cosψ − λ − sinψ

)
= 0 =⇒ λ2 2sinψ cosψ − λ

− λ cosψ + 1 = 0 , (8.23)

for which the solutions are

λ = cosψ ±
√

cos2 ψ − 1 = cosψ ± i sinψ = e±iψ . (8.24)

The eigenvectors then satisfy(
cosψ − e±iψ − sinψ

sinψ cosψ − e±iψ

) (
vx
vy

)
= 0 , (8.25)

which simplifies to (∓i sinψ − sinψ vx = 0 , (8.26)sinψ ∓i sinψ
) (

vy

)

from which we see that vy = ∓ivx. Constructing normalized eigenvectors, we can define

û(1) ≡ û+ 1
= √ (êx + iê

2
y)

(8.27)
û(2) 1≡ û− = √ (ê

2
x − iêy) ,

which are orthonormal in the sense that

û(i)∗ · û(j) = δij . (8.28)

We can complete a basis for three-dimensional vectors by adding

û(3) ≡ ẑ = êz . (8.29)

You might ask how one should visualize a vector with imaginary components. What
direction does it point? It certainly points in a definite direction in complex three-
dimensional space, which is equivalent to a six-dimensional real-valued space, but for our
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purposes we do not need to have any geometric picture of these vectors. We are simply
going to use them to form dot products to construct (complex-valued) functions of θ and
φ.

Note that complex conjugation, as used in Eq. (8.28), is essential for defining a
positive definite norm for complex vectors. The quantities û(+) · û(+) and û(−) · û(−), by
contrast, are in fact equal to zero. This leads to the convenient fact that

û+
i1
. . . û+

i�
(8.30)

is both traceless and symmetric.

Since
û+ 1· n̂ = √ sin θeiφ , (8.31)

2

we can construct functions proportional to eimφ, for m > 0, by including m factors of
û+, and arranging for each of them to be dotted into n̂. This can be done by considering
the function defined by

F�m(θ, φ) ≡ { û+
i1
. . . û+

im
ẑim+1 . . . ẑi� } n̂i1 . . . n̂i� . (8.32)

To see that in this expression every û+ is dotted into an n̂, recall that û+ · ẑ = û+ ·û+ = 0.
So, when the right-hand side is expanded and all the indices are summed to give dot
products, the only terms that survive are those for which every û+ is dotted into ẑ.
Thus, the right-hand side of Eq. (8.32) is proportional to eimφ. From Eq. (8.4), we know
that the right-hand side of Eq. (8.32) is an eigenfunction of ∇2

θ with eigenvalue −�(�+1).
I will argue below that any such eigenvector that is proportional to eimφ is necessarily
proportional to Y�m. We will return to the question of uniqueness, but let us first assume
that uniqueness holds, so that

F�m(θ, φ) ∝ Y�m(θ, φ) . (8.33)

As in the previous derivation for Legendre polynomials, we can determine the constant
of proportionality by matching the leading term in the expansions of both sides of the
equation. F�m(θ, φ) can be written as (sin θ)m eimφ times a polynomial in cos θ, so we
can use the highest power of cos θ to determine the matching.

It is easy to extract the leading term from Eq. (8.32), because it comes from the first
term in the expansion of

{ û+
i . . . û

+
i ẑim+1 } = û+ ˆ+

i . . . ui zi1 m 1 m
ˆ

m+1 . . . ẑi� + terms ∝ δipiq . (8.34)

The first term gives the highest power of cos θ, because the Kronecker δ-functions that
appear in all later terms cause one or more n̂’s to dot with other n̂’s, reducing the number
of n̂’s available to appear in the form n̂ · ẑ = cos θ. Thus,

F�m(θ, φ) = 2−m/2(sin θ)meimφ
[
(cos θ)�−m + (lower powers of cos θ)

]
. (8.35)
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To compare Eq. (8.35) with the leading term in the expansion for the standard
function Y�m, we need a formula for Y�m(θ, φ). It is given in Jackson as Eq. (3.53),
p. 108, as

Y�m(θ, φ) =

√
2�+ 1 (�−m)!

Pm� (cos θ)eimφ , (8.36)
4π (�+m)!

where Pm� (cos θ) is the associated Legendre function, which can be defined by Jackson’s
Eq. (3.50),

Pm
( 1)m 2 m/2 d�+m 2 �

� (x) =
−

(1− x ) (x − 1) . (8.37)
2��! dx�+m

Using the same technique as in Eq. (8.17), we find

d�+m
(x2 − 1)� = (2�) . . . (�+ 1)�(�− 1) . . . (�−m+ 1)x�−m + (lower powers)

dx�+m
(8.38)

(2�)!
= x�−m + (lower powers) .

(�−m)!

Matching the coefficients of these leading terms, we find that we can write (for m ≥ 0)

Y�m(θ, φ) = (�,m)
Ci ...i n̂i1 . . . n1 �

ˆi� , (8.39)

where
(�,m)

Ci i d�m u+ . . . u+ zi . . . zi ,
1 2...i�

= { ˆi1 ˆim ˆ
m+1 ˆ

�
} (8.40)

with
(−1)m(2�)!

√
2m (2�+ 1)

d�m = . (8.41)
2��! 4π (�+m)! (�−m)!

For negative values of m, the calculation is identical, except that we use û− instead
of û+. The result is

(�,m) (�, m )
Ci i ...i = d�m { û−i . . . û zi . . . zi1 2 � 1

−
i ˆ| | +1| m �m

ˆ| } = Ci ,
1i2...i�

(8.42)

where to allow for negative m we need to write d�m as

( 1)m(2�)! 2|m| (2�+ 1)
d�m =

−
√

. (8.43)
2��! 4π (�+m)! (�−m)!

It is worth mentioning that the curly brackets indicating “traceless symmetric part”
can be put on either factor or both in expressions such as Eq. (8.32). That is,

{ û+
i . . . û

+
i ẑim+1 . . . ẑi� } n̂i1 . . . n̂i� = { û+

i . . . û
+
i ẑi . . .

1 m 1 mm +1 ẑi� } { n̂i1 . . . n̂i� } (8.44a)

= û+
i . . . u1

ˆ+
i z
m îm+1 . . . ẑi� { n̂i1 . . . n̂i� } , (8.44b)

| | ∗
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where the top line is justified because { n̂i1 . . . n̂i� } differs from n̂i1 . . . n̂i� only by terms
proportional to Kronecker δ-functions, which give no contribution when summed with
the traceless symmetric tensor { û+

i . . . û
+
i ẑi1 m+1 . . . ẑi� }. Similarly, once the second

factor is written in traceless symmetric fo
m

rm, there is no longer a need to take the
traceless symmetric part of the first term, since { û+

i . . . u
+ zi . . . zi1

ˆim ˆ
m+1 ˆ

�
} differs from

û+ +
i . . . u1

ˆi z
m îm+1 . . . ẑi� only by terms proportional to Kronecker δ-functions, which vanish

when summed with the traceless symmetric tensor { n̂i1 . . . n̂i� }.
Finally, we can return to the question of uniqueness. In asserting that F�m(θ, φ) ∝

Y�m(θ, φ), we knew that both functions are proportional to eimφ, and that both are
eigenfunctions of ∇2

θ with eigenvalue −�(�+ 1). We claimed that, up to a multiplicative
constant, there is only one function that has these properties. Assuming that the power
series representation of Eq. (8.1) always exists, the uniqueness that we need is easy to
see. We showed in lecture that the number of linearly independent traceless symmetric
tensors of rank (�,m)

� is 2�+1, and now we have constructed 2�+1 such tensors: the Ci1...i
m = −�, . . . , �. These are clearly linearly independent, since they are each eigenfunc

�

tions
of rotations about the z-axis with different eigenvalues. Thus, any traceless symmetric
tensor of rank � must be a linear sum of the tensors in our basis. When we also specify
that the tensor being sought is an eigenvector of rotations about the z-axis, with a specific
eigenvalue, then only one of the tensors in our basis can contribute.

The above argument is solid, but one might still wonder what happens if we try,
for example, to construct a different tensor by using both û+’s and û−’s in the same
expression. For example, we might consider { û+

i û
−
j } , which is invariant under rotations

about the z-axis. With a little work, however, one can show that

{ û+ 1
i û

−
j } = −

2
{ ẑiẑj } . (8.45)

, for
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