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LECTURE NOTES 9
TRACELESS SYMMETRIC TENSOR APPROACH

TO LEGENDRE POLYNOMIALS
AND SPHERICAL HARMONICS

In these notes I will describe the separation of variable technique for solving Laplace’s
equation, using spherical polar coordinates. The solutions will involve Legendre polyno-
mials for cases with azimuthal symmetry, and more generally they will involve spherical
harmonics. I will construct these solutions using traceless symmetric tensors, but in
Lecture Notes 8 I describe how the solutions in this form relate to the more standard ex-
pressions in terms of Legendre polynomials and spherical harmonics. (Logically Lecture
Notes 8 should come after these notes, although they were posted first.) If you are start-
ing from scratch, I think that the traceless symmetric tensor method is the simplest way
to understand this mathematical formalism. If you already know spherical harmonics, I
think that you will find the traceless symmetric tensor approach to be a useful addition
to your arsenal of mathematical methods. The symmetric traceless tensor approach is
particularly useful if one needs to extend the formalism beyond what we will be doing —
for example, there are analogues of spherical harmonics in higher dimensions, and there
are also vector spherical harmonics that are useful for expanding vector functions of angle.
Vector spherical harmonics are used in the most general treatments of electromagnetic
radiation, although we will not be introducing them in this course.

I don’t know a reference for the traceless symmetric tensor method, which is the main
reason I am writing these notes. For the standard method, limited to the case of azimuthal
symmetry, our textbook by Griffiths should be sufficient. If you would like to see an
additional reference on spherical harmonics, which are needed when there is no azimuthal
symmetry, then I would recommend J.D. Jackson, Classical Electrodynamics, 3rd
Edition (John Wiley & Sons, 1999), Sections 3.1, 3.2, 3.5, and 3.6.

1. LAPLACE’S EQUATION IN SPHERICAL COORDINATES:

In spherical coordinates, Laplace’s equation can be written as

∇2 1 ∂ ∂ϕ 1
ϕ(r, θ, φ) =

r2 ∂r

(
r2

∂r

)
+

r2
∇2

θ ϕ = 0 , (9.1)

where the angular part is given by

∇2 1 ∂ ∂ϕ 1 ∂2

θ ϕ ≡
(

ϕ
sin θ .

sin θ

)
+ (9.2)

∂θ ∂θ sin2 θ ∂φ2
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It would be more logical to write ∇2
θ as ∇2

θ,φ, but it would be tiresome to write it that
way. It is sometimes useful to rewrite the first term in Eq. (9.1) using

1 ∂

r2 ∂r

(
r2 ∂ϕ 1 ∂2

= (rϕ) . (9.3)
∂r

)
r ∂r2

To use the method of separation of variables, we can seek a solution of the form

ϕ(r, θ, φ) = R(r)F (θ, ϕ) . (9.4)

Then Laplace’s equation can be written as

r2 d
0 = ∇2 1

ϕ =
(

dR 1
r2

R dr dr

)
+

RF F
∇2

θ F . (9.5)

Since the first term on the right-hand side depends only on r, and the second term
depends only on θ and φ, the only way that the equation can be satisfied is if each term
is a constant. Thus we can write

1
F
∇2

θ F = Cθ , (9.6)

1 d
(

R
r2 d

)
= −C .

R d θ (9.7)
r dr

2. THE EXPANSION OF F (θ, φ):

We now wish to find the most general solution to the equation

∇2
θ F = Cθ F , (9.8)

which is a rewriting of Eq. (9.6). If such a function F can be found, we say that F is an
eigenfunction of the operator ∇2

θ, with eigenvalue Cθ.

A function of angles (θ, φ) can equivalently be thought of as a function of the unit
vector n̂ that points in the direction of θ and φ, which can be written explicitly as

n̂ = sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3 , (9.9)

where ê1, ê2, and ê3 can also be written as êx, êy , and êz. I am labeling the unit vectors
using the numbers 1, 2, and 3 when I am thinking about summing over the indices, and
otherwise I use x, y, and z.

I now claim that the most general function of (θ, φ) can be written as a power series
in n̂, or more precisely as a power series in the components of n̂. I will not prove this,
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but it is true at least for square-integrable piece-wise continuous functions F (θ, φ). Such
a power series can be written as

F (n̂) = C(0) + (1)
Ci n̂i +

(2)
Cij n̂in̂

(
j + . . .+ 	)

Ci1i2...i n
�
ˆi1 n̂i2 . . . n̂i�

+ . . . , (9.10)

where repeated indices are summed from 1 to 3 (as Cartesian coordinates). Note that
(	)

Ci1i2...i ni�
ˆ 1 n̂i2 . . . n̂i�

represents the general term in the series, where the first three terms
correspond to � = 0, � = 1, and � = 2. The indices i1, i2, . . . , i	 represent � different
indices, like i and j; since they are repeated, they are each summed from 1 to 3.

The coefficients (	)
Ci1i2...i�

are called tensors, and the number of indices is called the

rank of the tensor. Note that (0), (1)
C Ci , and (2)

Cij are special cases of tensors, although
they can also be considered a scalar, a vector, and a matrix.

It is possible to impose restrictions on the coefficients of Eq. (9.10) without actually
restricting what can appear on the right-hand side of the equations. In particular, we
will insist that

1) The tensors (	)
Ci1i2...i�

are symmetric under any reordering of the indices:

(	) (	)
Ci1i C

2...i�
= j1j2...j ,

�
(9.11)

where {j1, j2, . . . , j	} is any permutation of {i1, i2, . . . , i	}.
2) The tensors (	)

Ci1i2...i are traceless, in the sense that if any two indices are set equal
to each other and summed,

�

the result is equal to zero. Since the tensors are already
assumed to be symmetric, it does not matter which indices are summed, so we can
choose the last two:

(	)
Ci1i2...i .

� 2jj−

To explain why these restrictions on the C(	)’s do not impose any restriction on the right-
hand side of Eq. (9.10), I will use the example of (2)

Cij , but I think you will be able to see

that that the argument applies to all �. The insistence that (2)
Cij is symmetric can be seen

to make no difference to the right-hand side of Eq. (9.10), because (2)
Cij multiplies the

symmetric tensor n̂in̂j . Thus, if
(2)

Cij had an antisymmetric part, it would not contribute
to the right-hand side of Eq. (9.10). The requirement of tracelessness is less obvious, but
suppose that (2)

Cij were not traceless. Then we could write

(2)
Cii = λ = 0 . (9.13)

= 0 (9.12)

�
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We could then define a new quantity,

C̃
(2)
ij = (2) 1

Cij − λδij . (9.14)
3

It follows that C̃
(2)
ij is traceless:

1˜(2) 1
Cii = (2)

Cii − λδ
3 ii = λ− λδ

3 ii = 0 , (9.15)

since δii = 3. The original term (2)
Cij n̂in̂j can then be expressed in terms of C̃(2)

ij :

(2)ˆ ˆ =
[
˜(2) 1

Cij ninj Cij + λδ
3 ij

]
n̂in̂ ˜(2) 1

j = Cij n̂in̂j + λ , (9.16)
3

where we used the fact that δij n̂in̂j = 1, since n̂ is a unit vector. The extra term, 1λ3 ,
can then be absorbed into a redefinition of C(0):

1
C̃(0) = C(0) + λ . (9.17)

3

Finally, we can write

C(0) + (1) )
C n̂i +

(2) (1) (2
i Cij n̂ n̂j = C̃(0)

i + Ci n̂i + C̃ij n̂in̂j , (9.18)

so we can insist that the tensor that multiplies n̂in̂j be traceless with no restriction on
what functions can be expressed in this form.

I will call the �’th term of this expansion F	(n̂), so

F	 i1i2...i i� 1 i2 i�

3. EVALUATION OF ∇2Fθ �(n̂):

To evaluate ∇2
θF	(n̂), we are going to take advantage of a convenient trick. Instead

of dealing directly with F	(n̂), we will instead introduce a radial variable r, using it to
define a coordinate vector

�r = rn .ˆ (9.20)

Following the notation of Griffiths (see his Eq. (1.19)), I will denote the coordinates of �r
by x, y, and z, or in index notation I will call them xi. So

�r = xiêi = x1ê1 + x2ê2 + x3ê3 . (9.21)

(n̂) = (	)
C n̂ n̂ . . . n̂ . (9.19)
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Then, given any F	(n̂) of the form given in Eq. (9.19), we can define a function F̃	(�r ) by

F̃
(	) 	

	(�r ) = Ci1i2...i xi� 1xi2 . . . xi�
= r F	(n̂) . (9.22)

Note that (	)
Ci i ...i is the same rank � F

1 2 �
traceless symmetric tensor used to define 	(n̂),

but we are defining F̃	(�r ) by multiplying (	)
Ci i ...i by xi1xi2 . . . xi and then summing over

indices, instead of multiplying by ˆ
1 2 ��

ni1 n̂i2 . . . n̂i�
and then summing.

Now we can make use of Eq. (9.1), which relates the full Laplacian ∇2 to the angular
Laplacian, ∇2

θ. We will find that in this case the full Laplacian and the radial derivative
piece of Eq. (9.1) will both be simple, so we will be able to determine the angular Laplacian
by evaluating the other terms in Eq. (9.1).

To evaluate ∇2F̃	(�r ), we start with � = 0. Clearly

∇2F̃0(�r ) = ∇2C(0) = 0 , (9.23)

since the derivative of a constant vanishes. Similarly for � = 1,

∇2F̃ 2 (1)
1(�r ) = ∇ Ci xi = 0 , (9.24)

since the first derivative produces a constant, so the second derivative vanishes. The first
nontrivial case is � = 2:

∇2F̃ (�r ) = ∇2 (2)
2 Cij xixj

= (2) ∂ ∂
Cij (xixj)

∂xm ∂xm (9.25)
(2 ∂

= )
Cij [δimxj + δjmxi]

∂xm

= 2 (2)
C [ (2)

ij δimδjm] = 2Cii = 0 ,

where in the last step we used the all-important fact that (2)
Cij is traceless. We will look

at one more case, and then I hope it will be clear that it generalizes. For � = 3,

∇2F3 �r ∇2Cijkxixjxk

= (3) ∂ ∂
Cijk (xixjxk)

∂xm ∂xm

∂
= (3)

Cijk

(
δimxjxk + (terms that symmetrize in ijk)

∂xm

)
(9.26)

= (3)
Cijk

(
δimδjmxk + (terms that symmetrize in ijk)

)
= (3)

Cijk

(
δijxk + (terms that symmetrize in ijk)

)
= (3)

Ciikxk + (terms that symmetrize in ijk) = 0 ,

˜ ( ) = (3)
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where again it is the tracelessness of (	)
Ci1i2...i�

that caused the term to vanish. Thinking
about the general term, one can see that after the derivatives are calculated, there are
�−2 factors of xi that remain, but there are still � indices on (	)

Ci1i2...i�
. Since all indices are

summed, there are always two indices on (	)
Ci1i2...i which are contracted (i.e., set equal to

each other) and summed, which causes the result
�

to vanish by the tracelessness condition.
The bottom line, then, is that

∇2F̃	(�r ) = 0 for all �. (9.27)

To see what this says about ∇2 	
θF	(n̂), recall that F̃	(�r ) = r F	(n̂). Using Eq. (9.1),

we can write

1 ∂
(

∂F̃2 � 2 1
0 = ˜∇ F	(r ) =

	(�r )
r

)
+ ∇2

θ F̃	(�r )
r2 ∂r ∂r r2

1 d 	
)

1
=

(
r2dr F	(n̂) + r	

r2 dr dr r2
∇2

θ F	(n̂)

= r	−2
[
�(�+ 1)F	(n̂) +∇2

θ F	(n̂)
]
,

and therefore

∇2
θ F	(n̂) = −�(�+ 1)F	(n̂) . (9.28)

Thus, we have found the eigenfunctions
(

(ˆ) = (	)
F	 n Ci1i2...i n̂i1 n̂i2 . . . n̂i� �

and eigen-

values
(
−�(�+ 1)

)
of the differential operator ∇2

θ. This is a very useful resul

)
t!

4. GENERAL SOLUTION TO LAPLACE’S EQUATION IN SPHERICAL
COORDINATES:

Now that we know the eigenfunctions of∇2
θ, we can return to the solution to Laplace’s

equation by the separation of variables in spherical coordinates. We now know that in
Eq. (9.6), the only allowed values of Cθ are −�(� + 1), where � is an integer. Thus,
Eq. (9.7) becomes

d
r2dR = �(�+ 1)R , (9.29)

dr

(
dr

)

and we can look for solutions by trying R(r) = rp. We find consistency provided that

p(p+ 1) = �(�+ 1) , (9.30)
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which is a quadratic equation with two roots, p = � and p = −(� + 1). Since we found
two solutions to a second order linear differential equation, we know that any solution
can be written as a linear sum of these two. Thus we can write

R	(r) = A	r
	 B
+ 	

, (9.31)
r	+1

allowing for different values of A	 and B	 for each �. The most general solution to
Laplace’s equation, in spherical coordinates, can then be written as

∞
Φ(�r ) =

∑(
	 B

A	r + 	

)
(	)

Ci i n̂i1i2... � 1 n̂i2 . . . n̂i�
, (9.32)

r	+1
	=0

where the A	’s and B	’s are arbitrary constants, and each (	)
Ci1i2...i�

is an arbitrary traceless
symmetric tensor.

In Lecture Notes 8 it is shown explicitly that the �’th term here, when compared
with the standard expansion in the spherical harmonic functions Y	m(θ, φ), corresponds
to the sum of all terms with the same �, but for all m. The Y	m’s are defined for integer
values of m from −� to �, so there are 2�+ 1 terms for each value of �.

5. COUNTING THE NUMBER LINEARLY INDEPENDENT TRACELESS
SYMMETRIC TENSORS:

Using the fact that (	)
Ci1i2...i is traceless and symmetric, we can determine how many

linearly independent such tenso
�

rs exist, for any given �. In other words, how many real
constants are needed to parameterize the most general traceless symmetric tensor of rank
�

We begin by calculating Nsym(�), the number of linearly independent symmetric
tensors of rank �. Note that we are postponing the consideration of tracelessness. For
grounding, we can start by saying that it takes one number to specify S(0), a rank 0
symmetric tensor, because it is just a number. (I am using S for symmetric tensors,
while reserving C for traceless symmetric tensors.) It takes 3 numbers to specify (1)

Si ,
since the 3 values (1) (1) (1)

S1 , (2)
S2 , and S3 can each be specified independently. For Sij ,

however, we see the constraints of symmetry: (2) has to equal (2)
Sij Sji , so there are fewer

than 9 independent values; there are 6, which can be taken to be (2) (2
S , (2) (2

11 12 , )
S S13 , )

S22 ,
(2)

S23 , (2)
S33 , with (2)

S21 , (2)
S31 , and (2)

S32 determined by symmetry. Since the order of the
indices does not matter, we can always list the indices in ascending order (as I did for

?
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(2)
Sij ) and then each independent entry will occur once. When the indices are so written
in ascending order, then the index values are completely determined if we just specify
how many indices are equal to 1, how many are equal to 2, and how many are equal to 3.
If it helps, we can imagine three hats, labeled 1, 2, and 3, and � indistinguishable balls,
representing the � indices of a rank � tensor. There is then a 1:1 correspondence between
independent tensor elements and the different ways that the balls can be put into the
hats. For example, if there are 9 balls, with 3 in the first hat, 2 in the second, and 4 in
the third, then this arrangement of balls corresponds to (9)

S111223333. So now we just have
to figure out how many different ways we can put � indistinguishable balls into 3 hats.

One way of counting the balls-in-hats problem is to imagine first labeling each ball
with a number, so they are no longer indistinguishable. We also introduce 2 dividers,
where 2 is one less than the number of hats. Initially we will also assign numbers to the 2
dividers. Thinking of the balls and dividers together, we have �+2 distinguishable objects.
We can imagine listing them in all possible orderings, and with � + 2 distinguishable
objects there are (� + 2)! orderings. For each ordering there is an equivalent balls-in-
hats assignment. The balls to the left of the left-most divider are assigned to hat 1, the
balls between the two dividers are assigned to hat 2, and the balls to the right of the
right-most divider are assigned to hat 3. We have of course overcounted, since many
different orderings of our �+2 objects will lead to the same number of balls in each hat.
However, we can see exactly by how much we have overcounted. We can re-order the �
balls without changing the number of balls in each hat, and we can interchange the two
dividers. So we have overcounted by a factor of 2�!. Thus,

(�+ 2)! 1
Nsym(�) = = (�+ 1)(�+ 2) . (9.33)

2�! 2

It is easily checked that this gives Nsym(0) = 1, Nsym(1) = 3, and Nsym(2) = 6, consistent
with the examples we started with.

To impose tracelessness, we require that our traceless tensors also satisfy

(	)
Si1...i�−2jj = 0 . (9.34)

How many conditions is this? One can see that the tensor on the left is a symmetric tensor
of rank �− 2, with free indices i1 . . . i	 2. The number of conditions is then N− sym(�− 2).
The number of linearly indendent traceless symmetric tensors is then given by

1 1
Ntraceless sym(�) = Nsym(�)−Nsym(�− − 2) = (�+ 1)(�+ 2)− (�

2 2
− 1)�

(9.35)
= 2�+ 1 .

So the correspondence with the standard Y	m’s is consistent, as it would have to
be. The spherical harmonic expansion is just a rewriting of Eq. (9.32), with a particular
choice of basis for the 2�+ 1 independent traceless symmetric tensors of rank �.
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6. SPECIAL CASE: AZIMUTHAL SYMMETRY:

Azimuthal symmetry means symmetry under rotation about an axis, which we will
take to be the z-axis. Equivalently, we can say that a problem is azimuthally symmetric
if nothing depends on the coordinate φ. To specialize the general expansion (9.10) for a
function of (θ, φ) to the azimuthally symmetric case, we need to construct traceless sym-
metric tensors which are invariant under rotations about the z-axis. One straightforward
way to this is to build the traceless symmetric tensor from the vector ẑ, the unit vector in
the z direction. Note that the x-, y-, and z- components of ẑ are 0, 0, and 1, respectively,
so ẑi = δi3.

[You may have noticed an inconsistency in my notation, as earlier (e.g., Eq. (9.9))
I used ê3 or êz for the unit vector in the z direction. In this case my inconsistency was
intentional, with two motivations. First, previously we never needed a notation for the
components of a unit basis vector, but here we will. It would be a real pain to write
(êz)i. Second, in Lecture Notes 8 I describe a convenient way to construct a basis for the
traceless symmetric tensors, which involves the use of a basis for vectors consisting of ẑ
and two complex vectors û+ and û−. So, the use of ẑ rather than êz will remind us that
we are thinking about the (û+, û−, ẑ) basis, rather than the (êx, êy, êz) basis.]

A rank � tensor can be constructed from ẑ simply by taking the product ẑi1 ẑi2 . . . ẑi�
.

This is symmetric, and can be made traceless by extracting the traceless part. Extracting
the traceless part means subtracting terms proportional to one or more Kronecker δ-
functions in such a way that the result is traceless. It gets rather complicated to describe
how this can be done for a general symmetric tensor of arbitrary rank, so I will just
illustrate it by example. Tensors of rank 0 and 1 (i.e., scalars and vectors) are by definition
traceless. I will use curly brackets { . . .} to denote the traceless symmetric part of . . ..
Thus,

{ 1 } = 1 ,
(9.36)

{ ẑi } = ẑi .

But for rank 2, the trace of ẑiẑj is equal to ẑiẑi = ẑ · ẑ = 1. But we can subtract a
constant times δij so that the result is traceless:

{ ẑiẑj } = ẑiẑj − 1δij .3 (9.37)

The coefficient is 1/3, because the trace of δij is

δii = 3 . (9.38)
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For rank 3, ẑiẑj ẑk has trace ẑiẑiẑk = ẑk, but we can make it traceless with a subtraction

{ ẑiẑj ẑk } = ẑiẑj ẑk − 1
5

(
ẑiδjk + ẑjδik + ẑkδij

)
. (9.39)

The subtraction must of course be symmetrized, as shown, since we are trying to construct
a traceless symmetric tensor. To verify that 1/5 is the right coefficient to make the
expression traceless, we can take its trace. Since it is symmetric we can sum over any
pair of indices. I will choose to sum over i and j:

δij{ ẑiẑj ẑk } = ẑiẑiẑk − 1
(
zi5 ˆ δik + ẑiδik + ẑkδii

(9.40)
= ẑk − 1 (ẑk + ẑk + 3ẑk) = 0 .

5

)

For rank 4 there is the option of subtracting terms with either one or two Kronecker
δ-functions, and both are needed to give a traceless result. We can start with arbitrary
coefficients, and see what they have to be:

{ ẑiẑj ẑkẑm } = ẑiẑj ẑkẑm + c1
(
ẑiẑjδkm + ẑiẑkδmj + ẑiẑmδjk + ẑj ẑkδim

(9.41)
+ ẑj ẑmδik + ẑkẑmδij

)
+ c2

(
δijδkm + δikδjm + δimδjk .

Within each set of parentheses, the terms are chosen to make the expressi

)
on symmetric

in i, j, k, and m. If we calculate the trace over i and j, we find

δij{ ẑiẑj ẑkẑm } = ẑk ẑm + c1
(
δkm + ẑkẑm + ẑkẑm + ẑkẑm

+ ẑkẑm + 3ẑkẑm

)
+ c2

(
3δkm + δkm + δkm (9.42)

= 1 + 7c1 ẑkẑm + c1 + 5c2 δkm .

)

For the expression to vanish fo

(
r all k an

)
d m, the

(
two terms

)
must vanish separately, so

c1 = −1/7 and c2 = 1/35. Thus,

{ ẑ 1
iẑj ẑkẑm } = ẑiẑj ẑk ẑm − (

ẑiẑjδkm + ẑiẑkδmj + ẑiẑmδjk + ẑj ẑkδim7 (9.43)
+ ẑj ẑmδik + ẑk ẑmδij

)
+ 1 δijδkm δikδjm δimδjk .35

(
+ +

)

It can be shown that any traceless symmetric tensor of rank � that is invariant
under rotations about the z-axis is proportional to { ẑi1 . . . ẑi�

}. (To see this, note that
in Lecture Notes 8 we construct a complete (2� + 1)-dimensional basis for the traceless
symmetry tensors of rank �. They depend on the azimuthal angle φ as zm(φ) ≡ eimφ,
with m taking integer values from −� to �. Since these functions of φ are orthogonal in
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the sense that
∫ 2π

zm
∗ (φ)zm0 ′ (φ) dφ = 2πδm′m, any traceless symmetric tensor of rank �

that is independent of φ must proportional to the m = 0 basis tensor.) Since Eq. (9.10)
tells us how to expand an arbitrary function of θ and φ in terms of traceless symmetric
tensors, we can now say that functions of θ alone (i.e., azimuthally symmetric functions
of n̂) can be expanded as

F (θ) = c0 + c1{ ẑi }n̂i + c2{ ẑiẑj } n̂in̂j + . . .+ c	{ ẑi1 . . . ẑi�
} n̂i1 . . . n̂i�

+ . . . ,

(9.44)
where the c	’s are constants. This corresponds to what is standardly called an expansion
in Legendre polynomials. In Lecture Notes 8 I show exactly how to relate these terms to
the standard conventions for normalizing the Legendre polynomials, but we can see here
exactly what these functions are. Using ẑ · n̂ = cos θ, we have

{ 1 } = 1

{ ẑi } n̂i = cos θ

1{ ẑ ẑj } n̂ 2
i in̂j = cos θ −

3 (9.45)
3{ ẑiẑj ẑk } n̂in̂j n̂k = cos3 θ − cos θ
5

{ ẑiẑj ẑkẑm } n̂ n̂ 4 6 2 3
i j n̂kn̂m = cos θ − cos θ + .

7 35

Up to a normalization convention described in Lecture Notes 8, these are the Legendre
polynomials P	(cos θ).

7. THE MULTIPOLE EXPANSION:

The most general solution to Laplace’s equation, in spherical coordinates, was given
as Eq. (9.32). We now wish to apply that result to a common situation: suppose we have
a charged object, and we wish to describe the potential outside of the object. Let’s say for
definiteness that the charge of the object is entirely contained within a sphere of radius
R, centered at the origin. In that case Laplace’s equation will hold for all r > R, so there
should be a solution of the form of Eq. (9.32) that is valid throughout this region. At
infinity the potential of a localized charge distribution will always approach a constant,
which we can take to be zero, we can see that the A	 coefficients that appear in Eq. (9.32)
must all vanish. The B	 factors can be absorbed into the definition of (	)

Ci ...i , so we can
write the expansion as

1 �

∞ 1
Φ( (	)

�r ) =
∑

C
r	+1 i1...i n

�
ˆi1 . . . n̂i�

. (9.46)
	=0
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Since each successive term comes with an extra factor of 1/r, at large distances the sum
is dominated by the first term or maybe the first few terms. All the information about
the charge distribution of the object is contained in the (	)

Ci1...i�
, so knowledge of the first

few (	)
Ci

the ob
1...i�

is enough to describe the field at large distances, no matter how complicated
ject.

The first few terms of this series have special names: the � = 0 term is the monopole
term, the � = 1 term is the dipole, the � = 2 term is the quadrupole, and the � = 3 term
is the octupole.

If we want to calculate the (	)
Ci1...i�

in terms of the charge distribution, we can start
with the general equation for the potential of an arbitrary charge distribution:

1 ρ(�r ′)
V (�r ) =

4πε0

∫
d3x . (9.47)|�r − �r ′|

The multipole expansion can then be derived by expanding 1/ |�r − �r ′| in a power series
in �r ′.

I’ll begin by doing it as Griffiths does, which gives the simplest — but not the most
useful — form of the multipole expansion. Griffiths rewrote the denominator as

1 1 1
= = √ , (9.48)|�r − �r ′| √

| 2 + |2 − 2 · r2 + r′2 − 2rr′ cos| | θ�r �r �r r
′′ � ′

where r and r′ are the lengths of the vectors �r and �r ′, respectively, and θ is the angle
between these vectors. Next he used the fact that the Legendre polynomials can be
defined by the generating function

1
g(x, λ) = √ , (9.49)

1 + λ2 − 2λx

which means that the Legendre polynomials P	(x) can be obtained by expanding g(x, λ)
in a power series in λ

1 ∞
g(x, λ) = √ = λ	P

1 + − 2

∑
	(x) . (9.50)

λ2 λx
	=0

Eq. (9.50) is sometimes taken as the definition of the Legendre polynomials, and some-
times it is derived from another definition. In any case, if we accept Eq. (9.50) as valid,
then

1 1 1 ∞ ′ 	
r

= = P (cos θ) . (9.51)| 	
�r − �r ′|

r

√
1 +

(
r′
r

)2 r− 2 r′ cos θ′

∑
	=0

r

(
r

)

:
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Inserting this relation into Eq. (9.47), we find

1 ∞
′	V (�r ) =

4

∑ 1
∫

r ρ(�r ′)P 3
	(cos θ′) d x . (9.52)

πε 	
0 r +1

	=0

This is the easiest way that I know to show that there is an expansion of V (�r ) in powers of
1/r, but the complication is that cos θ′ appears inside the integral. If we could implement
Eq. (9.46), we would be able to calculate (or maybe measure) a small number of the
quantities (	)

Ci1...i�
, and then we would be able to evaluate V (�r ) at large distances in any

direction. To use Eq. (9.52) directly, however, one would have to repeat the integration
for every direction of �r . Griffiths works around this problem by massaging the formula
to extract the monopole and dipole terms, and in Problem 3 of Problem Set 5 you had
the opportunity to carry this out for the quadrupole and octupole terms.

The standard method of “improving” Eq. (9.52) is to use spherical harmonics, but
here I will derive the equivalent relations using the traceless symmetric tensor approach.

Instead of expanding 1/ |�r − �r ′| in powers of r′, we will think of it as a function of
three variables — the components �r ′

i of �r
′, and we will expand it as a Taylor series in 3

variables. To make the formalism clear, I will define the function

1
f(�r ′) ≡ . (9.53)|�r − �r ′|

The function can then be expanded in a power series using the standard multi-variable
Taylor expansion:

∂f 1 ∂2f
f(�r ′) = f(�0) +

∣∣∣ x′
i + x′

ix
′ + . . . , (9.54)

∂x′
i
∣ ∂x ∂x j
�r ′=�0 2! i

′ ′
j

∣∣
�r ′=�0

where the repeated indices are summed. To separate the

∣∣∣
angular behavior, we write

x′
i = r′n̂′

i , (9.55)

so Eq. (9.54) becomes

∂f
∣

r′2 ∂2f
f(�r ′) = f(�0) + r′

∣
n n + . . . .

∂x′
i
∣∣∣ n̂i

′ + ˆ′ ˆ′ (9.56)
� 2! ∂x ∂x�r ′=0

′
i

′
j

∣∣
i j

�r ′=�0

The notation can now be simplified by noting that since

∣∣
f is a function of �r − �r ′, the

derivatives with respect to x′
i can be replaced by derivatives with respect to xi with a

change of sign:

∂f ∂
=

∂x′
i ∂x′

i

(
1 ∂ 1 ∂ 1

= = . (9.57)|�r − �r ′

)
−|

∣∣
�r ′=�0 ∂xi

(
|�r − �r ′|

)∣∣
� ∂x

(∣ −∣ ∣∣
r ′=�0 i |�r |

)
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This allows us to write the derivatives in the expansion (9.56) much more simply. The
�’th derivative is found by repeating the above operation � times:

∂	f
∣∣ ∂	

	 1
= (−1) . (9.58)

∂x′
i . . . ∂x
1

′
i� �r =� ∂xi1 . . . ∂xi�

|�r′ 0
|

Combining Eqs. (9.58) with (9.56),

∣∣
we can write

1 ∞ ( ∂
=

−1)	r′	 	 1
n̂′ . . . n̂′ . (9.59)|�r − �r ′|

∑
�!

(
∂x . . . ∂x |�r |

)
i1 i�

i1 i
	=0 �

Note that the quantity in parentheses in the equation above is traceless, because(
∂	 1 ∂

=
∂xi∂xi∂xi+2 . . . ∂xi�

|�r |
)

	

∇2 1
∂xi+2 . . . ∂xi�

|�r |
(9.60)

∂	 1
=

∂xi+2 . . . ∂xi�

∇2 = 0 ,|�r |
because ∇2(1/|�r |) = 0 except at �r = 0. So we can see the traceless symmetric tensor
formalism emerging.

To evaluate this quantity, we will work out the first several terms until we recognize
the pattern. We write

�r ≡ rn ,ˆ (9.61)

and adopt the abbreviation
∂

∂i ≡ . (9.62)
xi

It is useful to start by evaluating the derivatives of the basic quantities r and n̂i:

∂ r = ∂ /
i(xjxj)1 2 1 1 x

i = ( i
x 1

kxk)− /2∂i(xjxj) = 2x
2 2 jδij = = n̂i ,

r r
(9.63)(xj δij 1 1

∂i j i j i ij i j
r r r2 r

It is then straightforward to show that

∂i

(
1
)

1
= − n̂i ,

r r2

1 3
∂i∂j

(
r

)
=

r3
{ n̂in̂j } , (9.64)

1 5 3
∂i∂j∂k

( )
=

·
r

− n
r

{ n̂iˆjn̂k } ,
4

n̂ = ∂ = x ∂ r = δ n̂ n̂ .
)

− −( )
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where { } denotes the traceless symmetric part, and the relevant cases are shown explicitly
in Eqs. (9.36) – (9.39). It becomes clear that the general formula, which can be proven
by induction, is

∂	 1 (−1)	(2�− 1)!!
= { n̂ii

. . . n̂i
∂x 	

i1 . . . ∂x � r +1 �
i�

r
} , (9.65)| |

where

(2�)!
(2�− 1)!! ≡ (2�− 1)(2�− 3)(2�− 5) . . .1 = , with ( 1)!!

2	�!
− ≡ 1 . (9.66)

Inserting this result into Eq. (9.59), we find

1 ∞ 1)!! r′	
=
∑ (2�− { n̂i1 . . . n̂ ′

|�r − �r ′| �! i
r	+1 �

} n̂i1
. . . n̂′

i�
. (9.67)

	=0

One can write this more symmetrically by writing

1 ∞
�− 1)!! r′	

=
∑ (2

n̂ . . . n̂ n̂′ . . . n̂|�r − �r ′| �!
{ i i

r	 1 �
} { i1 i

′ ,
+1 �

	=0

} (9.67)

since { n̂′
i1

. . . n̂′
i�
} differs from n̂′

i1
. . . n̂′

i�
by terms proportional to Kronecker δ-functions,

which vanish when summed with the traceless tensor { n̂i1 . . . n̂i�
}. Starting with

Eq. (9.67), one can if one wishes drop the curly brackets around either factor (but not
both!).

Inserting this expression for 1/|�r − �r ′| into Eq. (9.47), we have the final result

1 ∞ 1 (	)
V (�r ) =

4πε0

∑
C

r	+1 i1...i n
�
ˆi1 . . . n̂i�

, (9.68)
	=0

where
(	) (2�

Ci1...i�
=

− 1)!!
∫

ρ(�r ′)
�!

{�r ′
i1

. . .�r ′
i�
} d3x′ . (9.69)

Note that the coefficient in the above expression can also be written as

(2�− 1)!! (2�)!
= . (9.70)

�! 2	(�!)2
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For purposes of illustration, I will write out the first two terms — the monopole and
dipole terms — in a bit more detail. The monopole term can be written as

1 Q
Vmono(�r ) = , (9.71)

4πε0 r

where
Q = C(0) =

∫
ρ(�r ′) d3x′ . (9.72)

The dipole term is
1 p�

Vdip(�r ) = , (9.73)
4πε0 r2

where
pi =

(1)
Ci =

∫
ρ(�r ′)�ri d3x . (9.74)

· n̂
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