MIT OpenCourseWare
http://ocw.mit.edu
8.21 The Physics of Energy

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

8.21 Lecture 3

Mechanical Energy

September 14, 2009

Mechanical Energy

2001 U.S. Energy Use By Sector
Total 102 EJ

Transport:
$\sim 28 \%$ of U.S. energy use
~ $30 \mathrm{EJ} / \mathrm{year}$
$\sim 1 / 3$ of U.S. CO_{2} output

Elementary mechanics is relevant for understanding transport:

- Kinetic Energy

- Potential Energy

- Friction + air resistance

1. Kinetic Energy

Kinetic Energy of a mass m moving at speed $v: \quad E_{\text {kin }}=\frac{1}{2} m v^{2}$
$\begin{aligned} \begin{aligned} & \text { baseball @ } E_{\mathrm{kin}} \\ & 100 \mathrm{mph}\end{aligned} & =\frac{1}{2}(5 \mathrm{oz})(100 \mathrm{mph})^{2} \cong \frac{1}{2}(150 \mathrm{~g})(160 \mathrm{~km} / 3600 \mathrm{~s})^{2} \\ & \cong \frac{1}{2}(0.15 \mathrm{~kg})(44 \mathrm{~m} / \mathrm{s})^{2} \cong 150 \mathrm{~J}\end{aligned}$
100 pitches $\cong 15 \mathrm{~kJ} \ll 10 \mathrm{MJ}$ daily human food energy

Camry w/4 passengers

$$
\begin{aligned}
E_{\mathrm{kin}} & =\frac{1}{2}(4000 \mathrm{lb})(60 \mathrm{mph})^{2} \\
& \cong \frac{1}{2}(1800 \mathrm{~kg})(27 \mathrm{~m} / \mathrm{s})^{2} \cong 700 \mathrm{~kJ}
\end{aligned}
$$

Transport Energy Example: ROAD TRIP!

Take Camry +4 passengers, Boston New York

Compute energy used: Distance $=210$ miles

$$
\begin{aligned}
& \qquad 30 \text { miles/gallon } \Rightarrow \begin{array}{l}
7 \text { gallons } \times 120 \mathrm{MJ} / \text { gallon } \cong 840 \mathrm{MJ} \\
\text { Camry w/4 } \\
\text { passengers }
\end{array}
\end{aligned}
$$

$$
\stackrel{E_{\mathrm{kin}}}{ }=\frac{1}{2} m v^{2} \cong 0.7 \mathrm{MJ}
$$

Engine efficiency? (25% : $840 \rightarrow 710 \mathrm{MI}$)
Hills?

Friction + air resistance?

Question: how much energy expenditure is really necessary?

2. Potential Energy

Fundamental Principle: Energy is CONSERVED

Potential Energy: energy stored in a configuration of objects interacting through forces

Motion against a force (e.g. roll ball uphill)
kinetic energy \rightarrow potential energy

- Force points in direction of decreasing potential energy
- Motion in direction of force: potential $\mathrm{E} \rightarrow$ kinetic E

Example: spring $\sim M=\frac{1}{2} k x^{2}$

Potential Energy, Forces, and Work

Consider mass m subject to force $F=-k x$ from potential $U(x)$

Newton: $F=m a=m \ddot{x}$
(Transfers KF Δ nov
Force over distance does work
$W=F \times d \Rightarrow W=\int F(x) d x$
Unpack: $\frac{d E_{k}}{d t}=m \ddot{x} \ddot{x}=F \frac{d x}{d t}$
$E_{k}+U=$ const. $\Rightarrow \frac{d U}{d t}=-F \frac{d x}{d t}$
So conservation of $E \Rightarrow \quad U=-\int F d x, \quad$ or $\quad F=-d U / d x$

Potential Energy and Vectors

For motion in a line, $F=m \ddot{x}$, potential $U \Rightarrow F=-d U(x) / d x$.

In 2D/3D, use vectors

Vector force: $\quad \mathbf{F}=m \mathbf{a}=m \frac{d^{2} \mathbf{x}}{d t}=(m \ddot{x}, m \ddot{y}, m \ddot{z})$

Potential $U(x, y, z) \Rightarrow$

$$
\mathbf{F}=-\nabla U=\left(-\frac{\partial U}{\partial x},-\frac{\partial U}{\partial y},-\frac{\partial U}{\partial z}\right)
$$

Example: gravity

$$
\begin{gathered}
U=-\frac{G M m}{\mathbf{r}} \\
\mathbf{F}=-\nabla U=-\frac{G M m}{r^{2}} \hat{r}
\end{gathered}
$$

Potential Energy: Applications

- Airplane at altitude

747 at $900 \mathrm{~km} / \mathrm{h}$ has $E_{\text {kin }} \cong \frac{1}{2}(350,000 \mathrm{~kg})(250 \mathrm{~m} / \mathrm{s})^{2} \cong 11 \mathrm{GJ}$

How about potential energy?

$$
\begin{aligned}
& \| F=m g \\
& h=40,000 \mathrm{ft}
\end{aligned}
$$

$$
U=m g h \cong(350,000 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12,000 \mathrm{~m}) \cong 41 \mathrm{GJ}
$$

Other examples of potential energy applications:

- Pump water uphill for storage
- Elevators, cranes, etc.

Back to the road trip!

- 4000 lb car at $60 \mathrm{mph} \rightarrow 0.7 \mathrm{MJ}$
- Using 840 MJ of gasoline energy

Boston and New York are both basically at sea level
Is potential energy relevant? Yes!
http://wnw.usatf.org/routes/map/

Recapture some lost energy on downhill-but not all!

Estimate effects of hills

- Constant speed $v=60 \mathrm{mph} \cong 100 \mathrm{~km} / \mathrm{h}$

Assume: - 50 ft of elevation gain per mile

- Lose $1 / 2$ of energy used going up on downhill braking

Energy needed/hill $=m g h=(1800 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(15 \mathrm{~m}) \cong 260 \mathrm{~kJ}$

$$
\frac{1}{2} \times 260 \mathrm{~kJ} / \mathrm{mile} \times 210 \mathrm{miles} \cong 27 \mathrm{MJ}
$$

So:

Still $\ll 210$ MJ engine output (assuming 25\% efficiency)

What's left?

3. Air Resistance and Friction

How much energy is lost to air resistance?

Car collides with air molecules, sweeps into wake
Details complicated-But basic idea is simple:
Car sweeps out tube of area A, accelerates air to $\sim v$

$$
\Delta E_{\mathrm{air}} \cong \frac{1}{2} c_{d}\left(\Delta m_{\mathrm{air}}\right) v^{2}
$$

$$
c_{d}=\text { drag coefficient }
$$

(typical car: $c_{d} \sim 1 / 3$)

$$
\begin{aligned}
\frac{d E_{\mathrm{air}}}{d t} & \cong \frac{1}{2} c_{d}[(d(\mathrm{vol}) / d t) \times(\text { mass density } \rho)] v^{2} \\
& \cong \frac{1}{2} c_{d}(A v) \rho v^{2} \cong \frac{1}{2} c_{d} A \rho v^{3}
\end{aligned}
$$

So total energy lost to air resistance in distance D is

$$
W_{\mathrm{air}}=\frac{1}{2} c_{d}(A D) \rho v^{2}
$$

For the Toyota Camry going Boston \rightarrow New York

$$
\frac{1}{2}(0.33)\left(2.66 \mathrm{~m}^{2} \times 330 \mathrm{~km}\right)\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)(27.7 \mathrm{~m} / \mathrm{s})^{2} \cong 133 \mathrm{MJ}!
$$

- Note: traveling at $80 \mathrm{mph} \Rightarrow\left(\times(4 / 3)^{2}\right) \Rightarrow 236 \mathrm{MJ}$
- Rolling resistance $\sim 1 \%$ grade $\Rightarrow 54 \mathrm{MJ}$

Final energy accounting: Road trip to New York

2 MJ	kinetic energy (including 12 stoplights)
+27 MJ	potential energy of hills
+54 MJ	rolling resistance
+133 MJ	air resistance
216 MJ	total

Energy in gasoline: 840 MJ, energy efficiency $\sim 25 \%$
Discuss internal combustion engine efficiency in Lecture 10
Note: City driving very different, dominated by acceleration/rolling resistance (\& hills in SF)
U.S. uses $30 \mathrm{EJ} / \mathrm{ye}$ ar for transport. How to reduce?

Simple physics \rightarrow ideas for reducing transport energy cost

- $W_{\text {air }} \sim v^{2}$: Drive $60 \operatorname{not} 80$!
- $W_{\text {air }} \sim c_{d} A$: Streamline! Mass transit!
- Inflate your tires. (Decreases rolling resistance)
- More efficient engines (e.g. Toyota hybrid: Atkinson [L10])
- Regenerative brakes (capture hill, stoplight energy)
- $W_{\text {air }} \sim \rho$: vacuum tunnels? space?

In principle, with regenerative braking, and $\rho \rightarrow 0$,

$$
E_{\text {transport }} \rightarrow 0!
$$

SUMMARY

- Kinetic Energy $=\frac{1}{2} m v^{2}$
- Potential Energy: $U=m g h, \quad \mathbf{F}=-\nabla U$
- Air Resistance $\frac{d W_{\text {air }}}{d t}=\frac{1}{2} c_{d} A \rho v^{3}$
-car engines $\sim 25 \%$ efficient $\quad 840 / 4=\underline{210 ~ M J}$
- Auto
transport:

> -air resistance $\sim 135 \mathrm{MJ}$
-rolling resistance $\sim 50 \mathrm{MJ}$
-hills
$\sim 25 \mathrm{MJ}$

Next: HEAT (please review lecture notes)

