MIT OpenCourseWare <u>http://ocw.mit.edu</u>

8.21 The Physics of Energy Fall 2009

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Kinetic Energy Potential Energy Air Resistance and Friction

8.21 Lecture 3

Mechanical Energy

September 14, 2009

Kinetic Energy Potential Energy Air Resistance and Friction

Mechanical Energy

Elementary mechanics is relevant for understanding transport:

Kinetic Energy → Potential Energy →
Friction + air resistance →

1. Kinetic Energy

Camry w/4 passengers

Kinetic Energy of a mass *m* moving at speed *v*: $E_{kin} = \frac{1}{2}mv^2$

baseball @
$$E_{\text{kin}} = \frac{1}{2} (5 \text{ oz}) (100 \text{ mph})^2 \cong \frac{1}{2} (150 \text{ g}) (160 \text{ km}/3600 \text{ s})^2$$

 $\cong \frac{1}{2} (0.15 \text{ kg}) (44 \text{ m/s})^2 \cong 150 \text{ J}$

100 pitches \cong 15 kJ \ll 10 MJ daily human food energy

$$E_{\text{kin}} = \frac{1}{2} (4000 \text{ lb}) (60 \text{ mph})^2$$
$$\cong \frac{1}{2} (1800 \text{ kg}) (27 \text{ m/s})^2 \cong 700 \text{ kJ}$$

8.21 Lecture 3: Mechanical Energy

Transport Energy Example: ROAD TRIP!

Take Camry + 4 passengers, Boston New York

Compute energy used: Distance = 210 miles

30 miles/gallon \Rightarrow 7 gallons \times 120 MJ/gallon \cong 840 MJ Camry w/4 passengers

Where does the energy go?

$$E_{\rm kin} = \frac{1}{2}mv^2 \cong 0.7 \, {\rm MJ}$$

Engine efficiency? (25%: $840 \rightarrow 210$ MI) Friction + air resistance?

iction + air resistance?

Question: how much energy expenditure is really necessary?

Hills?

Kinetic Energy Potential Energy ir Resistance and Friction

2. Potential Energy

Fundamental Principle: Energy is CONSERVED

Potential Energy: energy stored in a configuration of objects interacting through forces

Motion against a force (e.g. roll ball uphill)

kinetic energy \rightarrow potential energy

- Force points in direction of decreasing potential energy
- \bullet Motion in direction of force: potential $E \rightarrow kinetic \; E$

Example: spring $\sqrt{U} = \frac{1}{2}kx^2$

Potential Energy, Forces, and Work

Consider mass *m* subject to force F = -kx from potential U(x)

So conservation of $E \Rightarrow U = -\int F \, dx$, or F = -dU/dx

Potential Energy and Vectors

For motion in a line, $F = m\ddot{x}$, potential $U \Rightarrow F = -dU(x)/dx$.

Potential $U(x, y, z) \Rightarrow$ $\mathbf{F} = -\nabla U = \left(-\frac{\partial U}{\partial x}, -\frac{\partial U}{\partial y}, -\frac{\partial U}{\partial z}\right)$ Example: gravity $U = -\frac{GMm}{r}$ $\mathbf{F} = -\boldsymbol{\nabla}U = -\frac{GMm}{r^2}\hat{r}$

Potential Energy: Applications

• Airplane at altitude

747 at 900 km/h has $E_{\rm kin} \cong \frac{1}{2}(350,000 \text{ kg})(250 \text{ m/s})^2 \cong 11 \text{ GJ}$

 $U = mgh \cong (350,000 \text{ kg})(9.8 \text{ m/s}^2)(12,000 \text{ m}) \cong 41 \text{ GJ}$

Other examples of potential energy applications:

- Pump water uphill for storage
- Elevators, cranes, etc.

Back to the road trip!

- \bullet 4000 lb car at 60 mph \rightarrow 0.7 MJ
- Using 840 MJ of gasoline energy

Boston and New York are both basically at sea level Is potential energy relevant? Yes!

http://www.usatf.org/routes/map/

Recapture some lost energy on downhill-but not all!

Estimate effects of hills

• Constant speed $v = 60 \text{ mph} \cong 100 \text{ km/h}$

Assume:

- 50 ft of elevation gain per mile
- Lose 1/2 of energy used going up on downhill braking

Energy needed/hill = $mgh = (1800 \text{ kg}) (9.8 \text{ m/s}^2) (15 \text{ m}) \cong 260 \text{ kJ}$

$$\frac{1}{2} \times 260 \text{ kJ/mile} \times 210 \text{ miles} \cong 27 \text{ MJ}$$

So:

0.7 MJ to get started27 MJ for hills

Still $\ll 210$ MJ engine output (assuming 25% efficiency)

What's left?

3. Air Resistance and Friction

How much energy is lost to air resistance?

Car collides with air molecules, sweeps into wake

Details complicated-But basic idea is simple:

Car sweeps out tube of area A, accelerates air to $\sim v$

 $\Delta E_{\text{air}} \cong \frac{1}{2} c_d (\Delta m_{\text{air}}) v^2 \qquad \qquad \frac{c_d = \text{drag coefficient}}{(\text{typical car: } c_d \sim 1/3)}$

$$\frac{dE_{\text{air}}}{dt} \cong \frac{1}{2}c_d \left[(d(\text{vol})/dt) \times (\text{mass density } \rho) \right] v^2$$
$$\cong \frac{1}{2}c_d (Av) \rho v^2 \cong \frac{1}{2}c_d A\rho v^3$$

So total energy lost to air resistance in distance D is

For the Toyota Camry going Boston \rightarrow New York

$$\frac{1}{2}(0.33)(2.66 \text{ m}^2 \times 330 \text{ km})(1.2 \text{ kg/m}^3)(27.7 \text{ m/s})^2 \cong 133 \text{ MJ!}$$

- Note: traveling at 80 mph $\Rightarrow (\times (4/3)^2) \Rightarrow 236 \text{ MJ}$
- \bullet Rolling resistance $\sim 1\%$ grade $\Rightarrow 54~MJ$

Final energy accounting: Road trip to New York

2 MJ	kinetic energy (including 12 stoplights)
+27 MJ	potential energy of hills
+54 MJ	rolling resistance
+133 MJ	air resistance
216 MJ	total

Energy in gasoline: 840 MJ, energy efficiency $\sim 25\%$

Discuss internal combustion engine efficiency in Lecture 10

Note: City driving very different, dominated by acceleration/rolling resistance (& hills in SF)

Kinetic Energy Potential Energy Air Resistance and Friction

U.S. uses 30 EJ/year for transport. How to reduce? Simple physics \rightarrow ideas for reducing transport energy cost

- $W_{\rm air} \sim v^2$: Drive 60 not 80!
- $W_{\text{air}} \sim c_d A$: Streamline! Mass transit!
- Inflate your tires. (Decreases rolling resistance)
- More efficient engines (e.g. Toyota hybrid: Atkinson [L10])
- Regenerative brakes (capture hill, stoplight energy)
- $W_{\rm air} \sim \rho$: vacuum tunnels? space?

In principle, with regenerative braking, and $\rho \rightarrow 0$,

 $E_{\text{transport}} \rightarrow 0!$

SUMMARY

- Kinetic Energy = $\frac{1}{2}mv^2$
- Potential Energy: U = mgh, $\mathbf{F} = -\nabla U$

• Air Resistance
$$\frac{dW_{\text{air}}}{dt} = \frac{1}{2}c_d A \rho v^3$$

	–car engines $\sim 25\%$ efficient	840/4 = 210 MJ
• Auto	-air resistance	$\sim 135~{ m MJ}$
transport:	-rolling resistance	$\sim 50~\text{MJ}$
	-hills	$\sim 25~\text{MJ}$

Next: HEAT (please review lecture notes)