Physics 8.321, Fall 2002
 Homework \#5

Due Wednesday, October 16 by 4:30 PM in the 8.321 homework box in 4-339B.

1. For each part of this problem you are asked to find an approximation to the energies of one or more of the lowest-lying quantum states for a particular potential. You may use any approximation technique you wish to determine the energy eigenvalues. You may use a computer if you wish, or you can work by hand. Please include a sketch or graph of the eigenfunctions in each case. In all parts you may use units with $\hbar=m=1$.
(a) Find the ground state and first excited state energies for a particle in the 1D potential

$$
V(x)=\frac{1}{4} x^{4}
$$

(b) Find the ground state and first excited state energies for a particle in the 1D potential

$$
V(x)=-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}
$$

(c) Find the ground state energy for a pair of particles in the harmonic oscillator potential $V(x)=x^{2} / 2$. The interaction energy between the particles is given by $-\sqrt{2}|x-y|$, where x, y are the positions of the two particles. You may assume that these particles are fermions, so that $\psi(x, y)=-\psi(y, x)$. Note that the Hamiltonian for this system is equivalent to that of a single particle moving in two dimensions x, y in the potential

$$
W(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-\sqrt{2}|x-y|
$$

(d) Find the ground state energy for a particle in the 2 D potential

$$
V(x, y)=\frac{1}{4} x^{4}+\frac{1}{6} y^{6}+2 x y
$$

2. This problem not included for copyright reasons.
