MIT OpenCourseWare
http://ocw.mit.edu

8.323 Relativistic Quantum Field Theory I

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department

8.323: Relativistic Quantum Field Theory I

Prof. Alan Guth
March 13, 2008

PROBLEM SET 5

REFERENCES: Lecture Notes \#4: Dirac Delta Function as a Distribution, on the website. Peskin and Schroeder, Sec. 2.4; Optional reference: Quantum Field Theory, by Lowell Brown, section 1.7 (coherent states).

Problem 1: Subtleties of delta functions (10 points)
(a) Consider $g_{1}(t)$ and $g_{2}(t)$ defined by

$$
\begin{equation*}
g_{1}(t) \equiv f(t) \delta(t-a) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}(t) \equiv f(a) \delta(t-a) \tag{1.2}
\end{equation*}
$$

where $f(t)$ is an arbitrary smooth function, a is a constant, and δ denotes the Dirac delta function. By "smooth," I mean that $f(t)$ is continuous, and differentiable as many times as might be necessary for any issue that arises. Note that $g_{1}(t)$ and $g_{2}(t)$ are distributions, defined more explicitly as

$$
\begin{equation*}
T_{g_{i}}[\varphi] \equiv \int_{-\infty}^{\infty} \mathrm{d} t g_{i}(t) \varphi(t) \tag{1.3}
\end{equation*}
$$

where $\varphi(t)$ is a test function. By evaluating the functionals shown in Eq. (1.3) for an arbitrary allowed test function, find out if $g_{1}(t)$ and $g_{2}(t)$ are equal to each other as distributions.
(b) Using a prime to indicate that a function is differentiated with respect to its argument, consider the distributions $h_{1}(t)$ and $h_{2}(t)$ defined by

$$
\begin{equation*}
h_{1}(t) \equiv f(t) \delta^{\prime}(t-a) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{2}(t) \equiv f(a) \delta^{\prime}(t-a) \tag{1.5}
\end{equation*}
$$

where again $f(t)$ is an arbitrary smooth function and δ denotes the Dirac delta function. The derivative of a distribution was defined in Lecture Notes 4. By
evaluating these two distributions for an arbitrary allowed test function $\varphi(t)$, find out if they are equal to each other as distributions.
(c) Now consider the derivatives of the distributions defined above in Eqs. (1.1) and (1.2):

$$
\begin{equation*}
g_{1}^{\prime}(t)=f^{\prime}(t) \delta(t-a)+f(t) \delta^{\prime}(t-a) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}^{\prime}(t)=f(a) \delta^{\prime}(t-a) \tag{1.7}
\end{equation*}
$$

IF you concluded that $g_{1}(t)$ and $g_{2}(t)$ are equal, then you should certainly expect that their derivatives should be equal, even if they do not appear to be identical. Find out if $g_{1}^{\prime}(t)$ and $g_{2}^{\prime}(t)$ are equal.
(d) Let the function $\theta(t)$ be defined in the standard way,

$$
\theta(t)= \begin{cases}1 & \text { if } t>0 \tag{1.8}\\ 0 & \text { otherwise }\end{cases}
$$

and consider the corresponding distribution

$$
\begin{equation*}
T_{\theta}[\varphi] \equiv \int_{-\infty}^{\infty} \mathrm{d} t \theta(t) \varphi(t) \tag{1.9}
\end{equation*}
$$

Define the derivative of a θ-function as a distribution, so

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} t \theta^{\prime}(t) \varphi(t) \equiv T_{\theta}^{\prime}[\varphi] \equiv-T_{\theta}\left[\frac{\mathrm{d} \varphi}{\mathrm{~d} t}\right] \tag{1.10}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\theta^{\prime}(t)=\delta(t) \tag{1.11}
\end{equation*}
$$

[Warning: The product of two distributions cannot be defined in general, nor can the square of a distribution. As a function, it is clear from the definition (1.8) that

$$
\begin{equation*}
\theta^{n}(t)=\theta(t), \tag{1.12}
\end{equation*}
$$

where n denotes any positive integer. Any function that is piecewise continuous and bounded by a power can be promoted to a corresponding distribution, so $T_{\theta}[\varphi]$ and $T_{\theta^{n}}[\varphi]$ are both well-defined distributions and are equal to each other. One might conjecture that

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \theta(t) & =\delta(t) \tag{1.13a}\\
\frac{\mathrm{d}}{\mathrm{~d} t} \theta^{2}(t) & =2 \theta(t) \delta(t) \tag{1.13b}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \theta^{3}(t)=3 \theta^{2}(t) \delta(t) \tag{1.13c}
\end{equation*}
$$

Eq. (1.13a) is identical to Eq. (1.11) and is correct, but the right-hand sides of Eqs. (1.13b) and (1.13c) are ill-defined. Since $\theta^{n}(t)=\theta(t)$, the left-hand sides of Eqs. (1.13a) - (1.13c) are all well-defined and are equal to each other. It is hard to imagine any consistent definition that would make the right-hand sides equal, so the standard approach is to consider them undefined.]

Problem 2: $\left(\square_{x}+\boldsymbol{m}^{2}\right) D_{F}(\boldsymbol{x}-\boldsymbol{y})=-i \boldsymbol{\delta}^{(4)}(\boldsymbol{x}-\boldsymbol{y})$ (10 points)
The Feynman propagator for a free scalar field $\phi(x)$ is defined by

$$
D_{F}(x-y)=\theta\left(x^{0}-y^{0}\right)\langle 0| \phi(x) \phi(y)|0\rangle+\theta\left(y^{0}-x^{0}\right)\langle 0| \phi(y) \phi(x)|0\rangle,
$$

where $|0\rangle$ denotes the vacuum state. Use the canonical commutation relations to show that

$$
\left(\square_{x}+m^{2}\right) D_{F}(x-y)=-i \delta^{(4)}(x-y),
$$

where

$$
\square_{x} \equiv \eta^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial x^{\nu}} .
$$

[Suggestion: First calculate

$$
\frac{\partial}{\partial x^{0}} D_{F}(x-y),
$$

and then differentiate this expression again to find

$$
\frac{\partial^{2}}{\partial\left(x^{0}\right)^{2}} D_{F}(x-y) .
$$

Then add in the other terms to find the final answer.]

Problem 3: Coherent states (15 points)

In lecture we solved the problem of a quantized scalar field $\phi(x)$ interacting with a fixed classical source $j(x)$,

$$
\left(\square+m^{2}\right) \phi(x)=j(x)
$$

We found that the in and out operators are related by

$$
\begin{aligned}
& \phi_{\text {out }}(x)=S^{-1} \phi_{\text {in }}(x) S \\
& a_{\text {out }}(\vec{p})=S^{-1} a_{\text {in }}(\vec{p}) S,
\end{aligned}
$$

where S can be written

$$
S=e^{-\frac{1}{2} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{p}}|\tilde{\jmath}(p)|^{2}} e^{F} e^{G}
$$

where

$$
\begin{aligned}
& F=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}} \tilde{\jmath}(p) a_{\mathrm{in}}^{\dagger}(\vec{p}) \\
& G=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}} \tilde{\jmath}(-p) a_{\mathrm{in}}(\vec{p}),
\end{aligned}
$$

and

$$
\tilde{\jmath}(p) \equiv \int \mathrm{d}^{4} y e^{i p \cdot y} j(y)
$$

(a) Show that S can also be written as

$$
S=e^{-\frac{1}{2} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{p}}|\tilde{\jmath}(p)|^{2}} e^{F^{\prime}} e^{G^{\prime}}
$$

where

$$
\begin{aligned}
& F^{\prime}=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}} \tilde{\jmath}(p) a_{\text {out }}^{\dagger}(\vec{p}) \\
& G^{\prime}=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}} \tilde{\jmath}(-p) a_{\text {out }}(\vec{p}),
\end{aligned}
$$

and hence that

$$
\left|0_{\text {in }}\right\rangle=e^{-\frac{1}{2} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{p}}|\tilde{\jmath}(p)|^{2}} e^{F^{\prime}}\left|0_{\text {out }}\right\rangle .
$$

Note that the right-hand-side of the above equation gives a useful description of the final state, since the out operators have a straightforward interpretation at late times. States of this form - exponentials of creation operators acting on the vacuum - are called coherent states.
(b) To study further the properties of coherent states, it is useful to consider a single harmonic oscillator,

$$
H=\frac{p^{2}}{2 m}+\frac{\omega^{2} m}{2} q^{2}
$$

which is simplified by the canonical transformation

$$
p=\sqrt{m \omega} \bar{p}, \quad q=\frac{1}{\sqrt{m \omega}} \bar{q}
$$

Dropping the overbars, the creation and annihilation operators are then given by

$$
\begin{aligned}
a^{\dagger} & =\frac{1}{\sqrt{2}}(q-i p) \\
a & =\frac{1}{\sqrt{2}}(q+i p)
\end{aligned}
$$

A coherent state $|z\rangle$ can be defined by

$$
|z\rangle \equiv e^{z a^{\dagger}}|0\rangle
$$

Show that $|z\rangle$ is an eigenstate of the annihilation operator, and find its eigenvalue.
(c) Show that $\left\langle z_{2} \mid z_{1}\right\rangle=e^{z_{2}^{*} z_{1}}$. (If you look at Lowell Brown's book, note that I am defining $\langle z|$ to be the bra vector that corresponds to the ket $|z\rangle$, so my $\langle z|$ is equal to Brown's $\left\langle z^{*}\right|$.)
(d) Find

$$
\langle q\rangle_{z} \equiv \frac{\langle z| q|z\rangle}{\langle z \mid z\rangle}
$$

and

$$
\langle p\rangle_{z} \equiv \frac{\langle z| p|z\rangle}{\langle z \mid z\rangle}
$$

(e) Compute the standard deviations of q and p,

$$
\begin{aligned}
\Delta q^{2} & =\left\langle(q-\langle q\rangle)^{2}\right\rangle \\
\Delta p^{2} & =\left\langle(p-\langle p\rangle)^{2}\right\rangle
\end{aligned}
$$

and show that $|z\rangle$ is a minimal-uncertainty state, in the sense that

$$
\Delta q \Delta p=\frac{1}{2}
$$

