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PROBLEM SET 9

Corrected Version†


REFERENCES: Peskin and Schroeder, Secs. 3.1-3.5. Some class lecture notes 
will also be posted. On Wigner’s Theorem, Problem 5, you might want to look 
at Steven Weinberg, The Quantum Theory of Fields, Volume 1: Foundations 
(Cambridge University Press, Cambridge, 1995), Section 2.2 and Appendix A 
of Chapter 2. 

Problem 1: The Dirac representation of the Lorentz group (10 points) 

Show that the defining property of the Dirac matrices, 

{γµ, γν } = 2gµν , 

is sufficient to show that the matrices 

Sµν = 
i

[γµ , γν ]
4 

have the commutation relations of the Lorentz group, as specified by Eq. (3.17) of 
Peskin and Shroeder: 

[Jµν , Jρσ ] =  i (g νρ Jµσ − gµρ Jνσ − g νσ Jµρ + gµσ Jνρ) . 

The notation for antisymmetrization introduced in Problem 1 of Problem Set 6 may 
prove useful. 

Show also that

[γµ , Sρσ] = (J ρσ )µ

ν γ
ν ,


where (J µν )αβ is defined by Eq. (3.18) of Peskin and Schroeder, 

(J µν )αβ ≡ i δα
µ δβ

ν − δβ
µ δα

ν . 

† This version replaces the April 28 version. The notation has been improved in 
Problem 2, using Λ 1 B3(η) instead of B3(η), and in Problem 4 the conventions 

2 

for the definition of Sµν were changed to agree with our standard conventions — 
this in turn resulted in a change in identity (vi). 
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Problem 2: Explicit tranformation matrices (10 points) 

Evaluate explicitly the 4×4 matrix used to represent a boost along the positive 
z-axis, 

Λ 1 B3(η) ≡ e −iηK3 

= e −iηS03 

. 
2 

Use Peskin and Schroeder’s conventions for the Dirac matrices. How is η related to 
the velocity of the boost? 

Similarly evaluate the 4×4 matrix used to represent a counterclockwise rotation 
about the positive z-axis, 

Λ 1 R3(θ) ≡ e −iθJ3 

= e −iθS12 

. 
2 

Problem 3: Wigner rotations and the transformation of helicity (15 
points) 

The Lorentz transformation properties of spin-1
2 particles are actually com

pletely dictated by the properties of the Lorentz group, even if we don’t know 
anything about the Dirac equation. 

Consider for example an electron in an eigenstate of momentum �p with eigen
value �p = 0; i.e., an electron at rest. We know from nonrelativistic quantum 
mechanics that the electron will have two possible spin states, which we can label 
as spin-up and spin-down along the z-axis. If we denote these states by |�p = 0, ±〉, 
then 

1 
Jz |�p = 0, ±〉 = ± |�p = 0, ±〉 . (3.1)

2 

If we were to perform a rotation on such a state, the momentum would remain zero, 
and so the two-state system would transform under the spin-1

2 representation of 
the rotation group, as in nonrelativistic quantum theory. The nonrelativistic theory 
must apply, because the transformation properties in the nonrelativistic theory were 
dictated completely by properties of the rotation group, and the rotation group is 
a subgroup of the Lorentz group. 

In the relativisitic theory, there must be a unitary operator U(Λ) corresponding 
the each Λ in the Lorentz group. We can use the operators representing boosts to 
construct a state of nonzero momentum along the z-axis with a definite helicity h: 

� 1 
� � � �pz, h ˆ = ± = U Bz (η(p)) |�p = 0, ±〉 , (3.2) � 2 

where η(p) is the boost parameter (rapidity) that brings a rest vector to pẑ. Note

that η(p) will depend on the mass m of the electron, so we assume that it has
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been specified. Note also that Jz commutes with Kz , so the state described by the 
equation above is still an eigenstate of Jz . 

We can also define states of definite helicity in any other direction. Let 
� 1 

�
��p, h  = ± ≡ U(B�p ) |�p = 0,±〉 , (3.3)
� 2 

where 
B�p	 = R(p̂)Bz η(|�p |) , (3.4) 

where R(p̂) is the rotation that rotates the positive z axis into the direction of �p . 
These states give a complete basis for the Hilbert space of free one-particle electron 
states. 

(a) Consider the state � 1 
� �pˆ = ±	 (3.5)z, h , � 2 

and imagine boosting it in the positive x-direction, by a velocity β 
� � � 1 

� 

|ψ〉 = U Bx(η(β)) pˆ = ±
2	 (3.6) 

� z, h 

= U Bx(η(β))Bz(η(p)) |�p = 0,±〉 . 
Compute the Lorentz transformation 

Bx(η(β))Bz (η(p)) ,	 (3.7) 

expressing your answer in the form of a 4 × 4 Lorentz matrix Λµ
ν . What is the 

momentum �p ′ of the state |ψ〉? 

(b) To express |ψ〉 in terms of the original basis vectors, we need the inner products 

〈�p ′, h′ |ψ 〉 = 
� 
�p = 0, h′ �U†(B�p � ) U 

� 
Bx(η(β))Bz(η(p)) 

�� �p = 0,± 
� 
, (3.8) 

where B�p is defined analogously to Eq. (3.4).  Since U(Λ) is a unitary repre
sentation of the group, 

U†(B�p � ) U 
� 
Bx(η(β))Bz(η(p)) 

� 
= U 

� 
B�p 

−1 Bx(η(β))Bz(η(p)) 
� 
. (3.9) 

Note, however, that 
RW ≡ B�p 

−
� 
1 Bx(η(β))Bz (η(p)) (3.10) 

brings a momentum vector at rest back to a momentum vector at rest, and 
hence it is a pure rotation. It is called the Wigner rotation. Since the matrix 
elements of U for rotations are already known, the matrix element needed here 
is known. Compute the Wigner rotation for this case, describing it first as a 
Lorentz matrix Λ. What is the axis of rotation? What is the angle of the 
rotation? 

(c) Now consider the	 m → 0 limit, keeping p and η fixed. This would be the 
appropriate limit to describe a massless particle with momentum of magnitude 
p. Show that the Wigner rotation angle approaches zero in this limit, and 
hence that the helicity of a massless particle is Lorentz invariant. 
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Problem 4: Useful tricks with Dirac matrices (10 points)* 

Using just the algebra {γµ, γν } = 2gµν (i.e. without resorting to a particular 
representation), and defining γ5 ≡ iγ0γ1γ2γ3, p/ ≡ pµ γ

µ, Sµν ≡ 
4 
i [γµ, γν ], and 

εµνρσ as the fully antisymmetric tensor with ε0123 = 1, prove the following results: 
(Some useful tricks include the cyclicity of the trace, and inserting (γ5)2 = 1  into 
a trace).  

i. Tr γµ = 0  

ii. Tr(γµ γν ) = 4gµν 

iii. Tr(γµγν γρ) = 0  

iv. (γ5)2 = 1  

v. Tr γ5 = 0  

vi. p/ q/ = 2p · q − q / = p · q − 2iSµν/ p 	 pµ qν 

vii. Tr(p /) = 4p · q/ q

viii. Tr(p/1 · · · p/n) = 0  if  n is odd 

ix. Tr(p/1 p/2 p/3 /p4) = 4[(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3) − (p1 · p3)(p2 · p4)] 

x. Tr(γ5p/1/p2) = 0  

xi. γµp/γ
µ = −2p/ 

xii. γµp/1p/2γ
µ = 4p1 · p2 

xiii. γµp/1/p2p/3γ
µ = −2p/3/p2p/1 

xiv. Tr(γ5/p1p/2/p3p/4) = 4iεµνρσ p1 
µp2 

ν p3
ρ p4 

σ 

Problem 5 (Extra Credit): Wigner’s Symmetry Representation Theorem 
(10 points extra credit) 

This problem will be a guided exercise in which a proof of Wigner’s theorem* 
will be constructed. The proof that you will construct is a modified version of the 
proof given in Steven Weinberg’s textbook, the complete reference for which was 
given at the start of the problem set. This version is in my opinion simpler, and 

*	 Problem taken from David Tong’s Lectures on Quantum Field Theory,

http://www.damtp.cam.ac.uk/user/dt281/qft.html.


* The theorem was originally proven in Gruppentheorie und ihre Anwendung 
auf die Quanten-mechanik der Atomspektren (Braunschweig, 1931), pp. 251–3, by 
Eugene P. Wigner.  An English translation was published by Academic Press in 
1959. 
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it also avoids what I believe is a minor flaw† in Weinberg’s argument. Weinberg 
in turn claims to have remedied a flaw in Wigner’s original proof, so historical 
precedent seems to suggest that any proof of Wigner’s theorem is flawed. If you 
find any flaws in this one, you will get extra credit. 

First, we need some definitions that will be used in the statement of the the
orem. Consider a quantum theory formulated on a Hilbert space � . A physical  
state corresponds to a ray � in the Hilbert space, where a ray is defined as a set 
of normalized vectors (〈Ψ |Ψ〉 = 1),  where  |Ψ〉 and |Ψ′〉 belong to the same ray if 
they are equal up to a phase (i.e., if |Ψ′〉 = eiθ |Ψ〉 for some real θ). I will use the 
notation |Ψ〉 ∈  � or � � |Ψ〉 to indicate that |Ψ〉 belongs to the ray � , and  I  
will define �(Ψ) to denote the ray that contains the vector |Ψ〉. We will consider 
a transformation T defined on physical states, so T maps one ray onto another. I 
will sometimes use the abbreviation T (Ψ) to denote T �(Ψ) , the image under T 
of the ray that contains the vector |Ψ〉. T will be said to be probability-preserving 
if 

|〈ψ2 
′ |ψ1 

′ 〉| = |〈ψ2 |ψ1 〉| (5.1) 

whenever 
|ψ1

′ 〉 ∈ T (ψ1) and  |ψ2
′ 〉 ∈ T (ψ2) . (5.2) 

If U is an operator on the Hilbert space � , then  T is said to be represented by U 
if 

|Ψ〉 ∈ � implies U |Ψ〉 ∈ T (�) . (5.3) 

An operator U on � is said to be linear if 

U α |ψ1〉 + β |ψ2〉) =  αU  |ψ1〉 + β U  |ψ2〉 , (5.4) 

and it is said to be antilinear if 

U 
� 
α |ψ1〉 + β |ψ2〉) =  α ∗ U |ψ1〉 + β ∗ U |ψ2〉 . (5.5) 

An operator is said to be unitary if 

〈Uψ2 |Uψ1 〉 = 〈ψ2 |ψ1 〉 , (5.6) 

and it is said to be antiunitary if 

〈Uψ2 |Uψ1 〉 = 〈ψ2 |ψ1 〉 ∗ 
. (5.7) 

† On pp. 92 and 93 of Weinberg’s text, he uses a number of equations in which 
C1 or C1 

′ appears in the denominator, where C1 and C1 
′ are expansion coefficients 

of an arbitrary state in a particular basis. The argument is therefore inapplicable 
to states for which these particular coefficients vanish. The gap can be filled, but 
doing so makes the proof more cumbersome. 
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Now Wigner’s theorem can be stated: 

Given any probability-preserving invertible transformation T on 
the rays of a Hilbert space � , then one and only one of the following 
two statements is true: 

(a) We can construct an operator U on the Hilbert space � which 
represents T and which is linear and unitary. 

(b) We can construct an operator U on the Hilbert space � which 
represents T and which is antilinear and antiunitary. 

In either case, the operator U is uniquely defined, up to an overall 
phase. 

To prove the theorem, we begin by proving some properties that T must have 
if it is probability-preserving and invertible. Let |ψ1〉, |ψ2〉, . . .  be a complete 
orthonormal set of vectors in � . For each k = 1, 2, . . .  , choose some particular 
vector 

|ψ̃k〉 ∈ T (ψk) . (5.8) 

(a) Show that the vectors |ψ̃1〉, |ψ̃2〉, . . .  also form a complete orthonormal set of 
vectors in � . 

(b) Now consider the vectors 

1 � � |φk〉 ≡ √ |ψ1〉 + |ψk〉 , (5.9)
2 

for k = 2, 3, . . .  . Show that for each k, 

T (φk) � √ 
1 � |ψ̃1〉 + e iθk |ψ̃k〉 

� 
(5.10)

2 

for some real θk. 

Now define 
1〉 = |ψ̃1〉 

iθk 
k〉 = e |ψ̃k〉 for k = 2, 3, . . .  , 

(5.11) 

1〉 + |ψk〉 

|ψ


|ψ


so

1 �


T (φk) � |φk〉 , where
 |φk〉 = √
 (5.12)
|ψ
 .

2


(c) Now consider the vectors 

1 � � |Φ(θ)〉 ≡ √ |ψ1〉 + e iθ |ψ2〉 , (5.13)
2 
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where θ is a real number. By considering the inner product of these vectors 
with the |ψk〉 and with |φ2〉, show that either 

� � � � � � 1 �	 � 
T Φ(θ) � �Φ′ (θ) , where �Φ′ (θ) = √ |ψ1

′ 〉 + e iθ |ψ2
′ 〉 (case A) +	 + 2 

(5.14a) 
or 

� � � � � � 1 � � 
T Φ(θ) � �Φ′ (θ) , where �Φ′ (θ) = √ |ψ′ −iθ |ψ′ (case B) .−	 − 1〉 + e 2〉 2 

(5.14b) 
If θ = nπ, where  n is an integer, then these two cases are identical. Otherwise �Φ′ (θ) and �Φ′ (θ) belong to different rays, so only one of the two cases + −
can apply. The choice between case A and case B is not our choice, but is 
determined by the properties of T , which defines the ray T Φ(θ) . 

(d) Show that for a given transformation	 T , the same case in Eqs. (5.14a) and 
(14b) applies to all values of θ. (Hint: Suppose that case A applies for θ = θA 

and case B applies for θ = θB , where  θA = nπ and θB � nπ. Consider the 
inner product 〈Φ(θB ) |Φ(θA) 〉.)


(e) Now consider the vectors 

1 �	 � |ΨN (α2, α3, . . . , αN )〉 = √ |ψ1〉 + e iα2 |ψ2〉 + e iα3 |ψ3〉 + . . .+ e iαN |ψN 〉 , 
N 

(5.15) 
where α2, α3, . . .  , αN are real numbers. For case A, show that 

T 
� 
ΨN (α2, . . . , αN ) 

� � �Ψ′ (α2, . . . , αN ) 
� 
, whereN,+

� � 1 �	 � �Ψ′	 |ψ′ iα2 |ψ′ iα3 |ψ′ iαN |ψ′ 
N,+(α2, . . . , αN ) = √ 1〉 + e 2〉 + e 3〉 + . . .+ e N 〉 , 

N 
(5.16a) 

and for case B, show that 

T 
� 
ΨN (α2, . . . , αN ) 

� � �Ψ′ (α2, . . . , αN ) 
� 
, whereN,−

� � 1 � � �Ψ′ (α2, . . . , αN ) = √ |ψ1
′ 〉 + e −iα2 |ψ2

′ 〉 + e −iα3 |ψ3
′ 〉 + . . .+ e −iαN |ψ′ .N,−	 N 〉 

N 
(5.16b) 

(Hint: Note that for N = 1  and  N = 2, this statement has already been proven. 
See if you can construct an argument using induction on N which demonstrates 
the result for all N .) 

(f) Now we are ready to consider an arbitrary vector, which can be expanded in

the complete orthonormal basis as


∞ 

|Ψ〉 = Ck |ψk〉 .	 (5.17) 
k=1 
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Show that for case A, 

T (Ψ) � 
� �Ψ′ 

+ 

� 
where 

� �Ψ′ 
+ 

� 
= 

∞ � 

k=1 

Ck |ψ′ 
k〉 (5.18a) 

and that for case B, 

T (Ψ) � 
� �Ψ′ 

− 

� 
where 

� �Ψ′ 
− 

� 
= 

∞ � 

k=1 

C ∗ 
k |ψ′ 

k〉 . (5.18b) 

(g) For case A, define 
∞ � 

U |Ψ〉 = 
� �Ψ′ 

+ 

� 
= 

k=1 

Ck |ψ′ 
k〉 , (5.19a) 

and for case B define 

∞ � 
U |Ψ〉 = 

� �Ψ′ 
− 

� 
= 

k=1 

C ∗ 
k |ψ′ 

k〉 , (5.19b) 

where |Ψ〉 is the state defined in Eq. (5.17).  From part (f), U is clearly a 
representation of T , as defined by Eq. (5.3).  Show for case A that U is linear 
and unitary, and for case B that it is antilinear and antiunitary. 

(h) Finally, prove that U is unique up to an overall phase. (Hint: Assume that U1 

and U2 both satisfy all the properties described in the theorem. Consider the 
product U2 

−1U1, which in either case A or B is a linear transformation which 
maps each ray onto itself. Show that such a map is necessarily an overall phase 
times the identity operator.) 


