
MIT OpenCourseWare 
http://ocw.mit.edu 

8.323 Relativistic Quantum Field Theory I
 
Spring 2008 
 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department


8.323: Relativistic Quantum Field Theory I 

Prof. Alan Guth May 7, 2008


PROBLEM SET 10


REFERENCES: Peskin and Schroeder, Sec. 3.6, Secs. 4.1-4.6, in addition to 
lecture slides that will be posted. 

Problem 1: Majorana Fermions (15 points) 

Problem 3.4 of Peskin and Schroeder. 

Problem 2: Supersymmetry (15 points) 

Problem 3.5 of Peskin and Schroeder. 

Problem 3: P, C, and T for Scalar and Dirac theories (10 points) 

Problem 3.7 of Peskin and Schroeder. 

Problem 4: Decay of a Scalar Particle (10 points) 

Problem 4.2 of Peskin and Schroeder. 

Problem 5 (Extra Credit): The Linked Cluster Theorem (10 points extra 
credit) 

The cancellation of disconnected diagrams that we found when we calculated 
〈Ω |T{φ(x1)φ(x2) . . . φ(xn)}| Ω〉 is actually part of a more general “linked cluster” 
theorem that is applicable to any system for which the concept of an expectation 
value makes sense. If one wishes to calculate the expectation value of an exponential 
function, or of some quantity times an exponential function, then the linked cluster 
theorem is useful. 

To express this theorem, let A1, A2,  . . . denote “random quantities,” i.e., quan
tities for which expectation values can be defined. They might be quantum-
mechanical operators, like φ(x1), φ(x2), . . ., or they might be classical random vari
ables, such as the position or momentum of particles in a statistical mechanics 
ensemble. We assume that the operations of addition and multiplication are well-
defined, and that the expectation value function 〈 〉 has the following two prop
erties: 
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(1) 〈 〉 is linear: 〈A + λB〉 = 〈A〉 + λ〈B〉 for any A, B . 

(2) 〈A1A2 . . .〉 is independent of the order of the factors. 

Note that (2) is not usually valid for quantum-mechanical operators, but does hold 
for time-ordered products of operators. For time-ordered products it is the time 
arguments that control the order of evaluation, so the order in which the operators 
are written has no effect. 

Our first task is to define the connected part, or cumulant, of a product of 
random quantities. For the product of two quantities, the definition will be 

〈AB〉 c = 〈AB〉 − 〈A〉〈B〉 , (5.1) 

which is also called the correlator of A and B. If A and B are uncorrelated, then 

〈AB〉 c = 0  . (5.2) 

A generalization of this concept can be defined by induction, but first we need to 
define what is meant by a partition of the integers {1, 2, . . . , N}. A partition of 
{1, . . . , N} into subsets is defined as a specific way of dividing the integers 1–N 
into non-empty subsets. More formally, a partition of {1, . . . , N} is a list of sets 
S1, S2, . . . , Sk , with the properties 

i) Each Sα is non-empty. 
ii) Each Sα ⊂ {1, . . . , N} . 

iii) Sα ∩ Sβ = 0  if  α 	= β . 
iv) 
� 

Sα = {1, . . . , N} .α=1,...,k 

Two partitions which differ only by the ordering of the subscript labels on the S’s are 
considered identical. Note that properties (iii) and (iv) above can be summarized 
by saying that each of the integers {1, . . . , N} belongs to one and only one set Sα. 
Assuming that the connected part has been defined for all products of size less than 
N , the connected part for 〈A1 . . .AN 〉 is defined by 

〈A1 . . .AN 〉c = 〈A1 . . .AN 〉 

− Ai . . .  Ai , (5.3) 
all proper i∈S1 c i∈Sk c


partitions of

{1, . . . , N}


where “proper partitions” excludes the case k = 1,  S1 = {1, . . . , N}. The definition 
(5.3) applies even when some or all of the Ai’s are equal; for example, Eq. (5.1) 
implies that A2 = A2 − 〈A〉2 

. 
c 
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(a) Use this definition to calculate 〈ABC〉 in terms of ordinary expectation values. �	 � c 
Find also the expression for A3 in terms of ordinary expectation values. 

c 

(b) Generalize	 Eq. (5.2) by showing that if two sets of random quantities 
A1, . . . , AM and B1, . . . , BN are independent of each other in the sense that 

〈Ai1 . . .Aim Bj1 . . .Bjn 〉 = 〈Ai1 . . .Aim 〉 〈Bj1 . . .Bjn 〉 (5.4) 

for any subset of the A’s and B’s, then 

〈Ai1 . . .Aim Bj1 . . .Bjn 〉 c = 0 	 (5.5)  

whenever m and n are both greater than or equal to one. [Hint: Mathematical 
induction is likely to be useful here.] 

We now consider expectation values of products of random quantities and ex
ponentials of random quantities. The quantities in the product can be labeled 
A1, A2, . . . , AN , and the argument of the exponential can be written as 

M 

B ≡ λiAi , (5.6) 
i=1 

where M ≥ N and M could be infinite. (Since the Ai’s had no particular ordering 
before writing this expression, there is no loss in generality in labeling a particular 
subset of the Ai as A1, . . . , AN .) Our goal is to prove the identity 

〈A1 . . .AN e B 〉 = exp  
�� 

e B 
� − 1 

� 
c �� � � �� � � 

×	 Ai e B · · ·  Ai e B . (5.7) 
all partitions i∈S1 c i∈Sk c 
of {1, . . . , N}
into subsets 

We will prove this by a method that is somewhat indirect. 

Instead of trying to directly prove Eq. (5.7) from the definition (5.3), we instead 
introduce a new definition of connected part to help us complete the proof. We use 
c̄ to denote the new definition of connected part, which is defined by a special case 
of Eq. (5.7): � � �� � � 

ie	
λiAi ≡ exp e i 

λiAi − 1 , (5.8) 
c̄ 

where	 � � � 
i 
λiAi	 (5.9)e 

c̄ 
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is to be viewed as a shorthand for 

∞ � 1 � � 
(5.10)
. . .  λi1 . . . λin 〈Ai1 . . .Ain 〉c̄ .


n!

n=0 i1 in 

We define 〈Ai1 to be independent of the ordering of the factors, so any
. . .Ain 〉
terms in the above sum that differ only by ordering are to be considered equivalent. 

To use Eq. (5.8) as a definition, consider expanding both sides to some fixed 
order in the λ’s. To zero order in λ, 

c̄ 

1 = exp{〈1〉c̄ − 1}

(5.11)


=⇒
 〈1〉c̄ = 1  .


To first order, 
λi〈Ai〉 = λi〈Ai〉c̄ 

i i (5.12) 

⇒ 〈 〉A= i c̄ = 〈Ai〉 . 

(c) Continue expanding Eq. (5.8) through third order in the λi’s, verifying that 
and that 〈ABC〉
̄〈AB〉c c 

(d) Now use a proof by induction to show that 

¯ = 〈AB〉
 = 〈ABC〉 .
c c 

B 〉 = exp  B − 1
〈A1 . . .AN e e

c̄ �� � � �� � � 

× Ai e B · · ·  Ai e B . 

c̄ c̄ 
of {1, . . . , N}
into subsets 

(5.13) 

all partitions i∈S1 i∈Sk 

Note that this formula differs from Eq. (5.7) only by using c̄ rather than c to 
define the connected part. The definition (5.8) guarantees that Eq. (5.13) holds 
for N = 0. You can therefore assume that Eq. (5.13) holds for some N , and  
show that it must hold for N + 1.  

(e) Having derived Eq. (5.13), now use the special case λi = 0  for  all  i to show 
that 

〈 〉A . . .A1 N c̄ = 〈A1 . . .AN 〉 c (5.14)


for all N .
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(f) To see how this general result applies to a free scalar quantum field theory, 
define 〈X〉 ≡ 〈0 |T (X)| 0〉, where  T is the time-ordered product. Suppose that 
A = φ2(x1) and  B = φ2(x2). Show that 

〈AB〉 =

= 2∆F (x1 − x2)2 + ∆F (0)2 , 

(5.15) 

and that 〈AB〉 c is given by the first graph alone. 

(g) Generalize the result in (f) to show that if each Ai is a normal-ordered product 
of free fields at the point xi, then  〈A1 . . .AN 〉 c is given by the sum of all Wick 
contractions that correspond to connected diagrams. [Hint: Again, a proof by 
induction is appropriate. Assume that the statement holds for all values of N 
less than some N0, and then use Eq. (5.3) to show that the only diagrams that 
make a net contribution to 〈A1 . . .AN 〉 c are the connected ones. 

Once we identify the connected part 〈A1 . . .AN 〉 with connected graphs, as c � 
you have done in part (g), note that one can take B = −i d4z� I (z), and then 
Eq. (5.7) becomes a generalization of Peskin and Schroeder’s Eq. (4.53): 

0 
� 
T φI (x)φI (y)e −i d4 z � I (z) � 0 

is given by the sum of all connected graphs times the exponential of all disconnected 
graphs. 


