Chapter 12

Problem Set Solutions

12.1 Problem Set 1 Solutions

1.

$$
\vec{A}=\frac{1}{x^{2}+y^{2}}\left(\begin{array}{c}
-y \tag{12.1}\\
x \\
0
\end{array}\right)
$$

(a)

$$
\vec{\nabla} \times \vec{A}=\frac{1}{x^{2}+y^{2}} \nabla \times\left(\begin{array}{c}
-y \tag{12.2}\\
x \\
0
\end{array}\right)+\nabla \frac{1}{x^{2}+y^{2}} \times\left(\begin{array}{c}
-y \\
x \\
0
\end{array}\right)=0
$$

except at $x=y=0$ where $\vec{\nabla} \times \vec{A}$ is singular.
(b) For any closed path which does not wind around $x=y=0$ line one gets

$$
\begin{equation*}
\oint_{C} d \vec{S} \cdot \vec{A}=0 \tag{12.3}
\end{equation*}
$$

because of above.
If C winds around the $z-\alpha \times \beta$ one instead gets,

$$
\begin{equation*}
\oint_{C} d \vec{S} \cdot \vec{A}=2 \pi \tag{12.4}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\vec{\nabla} \times \vec{A}=2 \pi \delta(x) \delta(y) \hat{z} \tag{12.5}
\end{equation*}
$$

A way to realize the setup is a thin long selonoid at $z-\alpha \times \beta$.
(c)

$$
\begin{equation*}
H=\frac{(\vec{p}+q \vec{A})^{2}}{2 \mu}=\frac{\vec{p}^{2}+2 q \vec{A} \vec{p}+q^{2} \vec{A}^{2}}{2 \mu} \tag{12.6}
\end{equation*}
$$

using $\vec{\nabla} \times \vec{A}=0$.
We change to cylindrical cards and consider the wave-function

$$
\begin{equation*}
\psi(\rho, z>\emptyset)=\psi(\rho, z) e^{i n \emptyset} \Rightarrow H=\frac{p_{\rho}^{2}}{2 \mu}+\frac{p_{z}^{2}}{2 \mu}+\frac{L_{z}^{2}}{2 \mu \rho^{2}}+\frac{A_{\emptyset} L_{z}}{\mu}+\frac{q^{2} A^{2}}{2 \mu} \tag{12.7}
\end{equation*}
$$

For $\vec{A}=\frac{\hat{u}}{q}$ one gets

$$
\begin{equation*}
H \psi=\frac{1}{2 \mu}\left(p_{\rho}^{2}+p_{z}^{2}+\frac{1}{\rho^{2}}(\hbar+q)^{2}\right) \psi \tag{12.8}
\end{equation*}
$$

We see the contrufugel pet.

$$
\begin{equation*}
V=\frac{1}{2 \mu \rho^{2}}(\hbar+q)^{2} \tag{12.9}
\end{equation*}
$$

unless $q=\hbar m$ (in which case $\psi \rightarrow \psi e^{i m \emptyset}$) we change the spectrum. For ψ to be single valued, $\emptyset=\frac{2 \pi \hbar}{q} \Rightarrow$ flux quantization.
(d) As $\hbar \rightarrow 0$ the dependence on \vec{A} of the spectrum gets away so this may quantum. As $\hbar \rightarrow 0, V=\frac{1}{2 \mu \rho^{2}} q^{2}$. A classical effect is that as you change the strength of A, i.e., q spectrum changes continuously.
(e) If you Legendre transform you see that

$$
\begin{equation*}
d \supset \frac{1}{2} \mu \rho^{2} \emptyset^{2}-\emptyset \rho q A_{\emptyset} \tag{12.10}
\end{equation*}
$$

in cylindrical cards (there are other terms that L don't better). A conserved charge associated with the solutions around the $z-\alpha \times \beta$ is

$$
\begin{equation*}
d_{z}=\frac{\partial d}{\partial \emptyset}=m \rho^{2} \emptyset-\rho q A_{\emptyset} \tag{12.11}
\end{equation*}
$$

This is canonical momentum. The mechanical momentum $L_{z}+\rho q A_{\emptyset}$ is not necessarily conserved.
2. (a)

$$
\begin{equation*}
A_{\mu \nu \rho} \rightarrow A_{\mu \nu \rho}+I_{[\mu \Lambda \nu \rho]} \tag{12.12}
\end{equation*}
$$

Define

$$
\begin{equation*}
F_{\mu \nu \rho \sigma}=I_{[\mu \Lambda \nu \rho \sigma]} \tag{12.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
K . E .=-\frac{1}{2} \frac{1}{4!}_{\mu \nu \rho \sigma} F^{\mu \nu \rho \sigma} \tag{12.14}
\end{equation*}
$$

E.O.M.:

$$
\begin{equation*}
I_{\mu} F^{\mu \nu \rho \sigma}=0 \tag{12.15}
\end{equation*}
$$

(Bronchi is trivial since there is no 5 -index anti-symmetric tensor).
Easiest way to see the number of d.o.f. is to take Poincare dual:

$$
\begin{equation*}
F(x)=\epsilon^{\mu \nu \rho \sigma} F_{\mu \nu \rho \sigma}(x) \tag{12.16}
\end{equation*}
$$

so there is one field degree of freedom off-shell.
On-shell one uses E.O.M.:

$$
\begin{equation*}
I_{\mu} F(x)=0 \Rightarrow F(x)=F=\text { constant } \tag{12.17}
\end{equation*}
$$

This is suggested to be associated with the cosmological constant: hep th 0111032, hep - th 0005276
(b) $A_{\mu \nu \rho}$ couples to volume-form $d x^{\mu} \Lambda d x^{\nu} \Lambda d x^{\rho}$. The classical source coupling is $\int A_{\mu \nu \rho} d x^{\mu} \Lambda d x^{\nu} \Lambda d x^{\rho}$. Under a g.t. this changes as

$$
\begin{equation*}
\int_{\mu} A_{\mu \nu \rho} d x^{\mu} \Lambda d x^{\nu} \Lambda d x^{\rho} \rightarrow \int_{\mu} A_{\mu \nu \rho} d x^{\mu} \Lambda d x^{\nu} \Lambda d x^{\rho}+\int_{\mu} I_{\mu} A_{\nu \rho} d x^{\mu} \Lambda d x^{\nu} \Lambda d x^{\rho} \tag{12.18}
\end{equation*}
$$

We should require that

$$
\begin{equation*}
\int_{I_{\mu}} \Lambda_{\nu \rho} d x^{\nu} \Lambda d x^{\rho}=0 \tag{12.19}
\end{equation*}
$$

where I_{μ} denotes the boundary of the shape it couples to. So either you require $\Lambda_{\nu \rho}\left(I_{\mu}\right)=0$ to be the only sensible g.t.'s or you require $I_{\mu}=0(\mu$ is compact) (which solves the problem for arbitrary $\Lambda_{\nu \rho}$).
(c) E.O.M. gets modified as

$$
\begin{equation*}
I_{\mu} F^{\mu \nu \rho \sigma}=J^{\nu \rho \sigma} \tag{12.20}
\end{equation*}
$$

Let's find the source

$$
\begin{equation*}
J^{\mu \nu \rho}(x)=\frac{\delta}{\delta A^{\mu \nu \rho}(x)} \int_{\mu} A_{\alpha \beta \gamma}(y) d y^{\alpha} \Lambda d y^{\beta} \Lambda d y^{\gamma} \tag{12.21}
\end{equation*}
$$

To vary with respect to $A^{\mu \nu \rho}(x)$ which lives on Minkewski, we should work out the embedding of μ into Minkewski. Parameterize the space-time coordinate on the world-volume as $y^{\mu}\left(u_{1}, u_{2}, u_{3}\right)$. Then above integral is

$$
\begin{equation*}
\int_{\text {Minkewski }} d^{4} x A_{\alpha \beta \gamma}(x) \operatorname{det}\left(\frac{d y^{\alpha}}{d x^{\mu}}\right) \delta(F(y)) \tag{12.22}
\end{equation*}
$$

where $F(y)$ defines the surface

$$
\begin{equation*}
J_{\alpha \beta \gamma}(x)=\int \delta^{4}\left(x-y\left(u_{1}, u_{2}, u_{3}\right)\right)\left(\operatorname{det} \frac{I y^{\alpha}}{d u^{i}}\right) d^{3} u \tag{12.23}
\end{equation*}
$$

(d) Important features are:

- B_{μ} encodes all information in $A_{\mu \nu \rho}$.
- It has the gauge symmetry.

$$
\begin{align*}
& B^{\mu} \rightarrow B^{\mu}=I_{\nu} \Lambda^{\mu \rho} \\
& F_{\mu \nu \rho \sigma}=\epsilon_{\mu \nu \rho \sigma} \nabla \cdot B \tag{12.24}
\end{align*}
$$

(e) Complete solution can be found in Peskin and Schroeder.
3.
4. (a) To find a basis for $S U(N)$ matrices parameterize the $N \times N$ traceless and Hermitian matrix. In case of $S U(3)$ this is

$$
\left.\begin{array}{rl}
\left(\begin{array}{ccc}
a & b+i c & d+i e \\
b-i c & f & g+i h \\
d-i e & \rho-i h & -a-f
\end{array}\right)= & a\left(\begin{array}{ccc}
1 & & \\
& 0 & \\
& & -1
\end{array}\right)+b\left(\begin{array}{cc}
& 1 \\
1 & \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}\right)+ \\
& i \\
-i & \\
& \\
& \\
& 0
\end{array}\right)+d\left(\begin{array}{cc}
& 1 \\
1 &
\end{array}\right)+
$$

$$
\begin{aligned}
& e\left(\begin{array}{ccc}
& & i \\
& 0 & \\
-i &
\end{array}\right)+f\left(\begin{array}{lll}
0 & & \\
& 1 & \\
& & -1
\end{array}\right)+ \\
& \left.g\left(\begin{array}{lll}
0 & & \\
& & 1 \\
& 1 &
\end{array}\right)+h\left(\begin{array}{lll}
0 & & \\
& & i \\
& -i
\end{array}\right) 12.26\right)
\end{aligned}
$$

We read of the basis elements \tilde{T}_{a} as coefficient of a, b, \cdots, h, requiring $\operatorname{tr} w^{a} w^{b}=\frac{1}{2} \delta^{a b}$ means choosing $w^{a}=\frac{1}{2} \tilde{T}_{a}$. This is a nice basis.
(b)

$$
\begin{equation*}
|\alpha|^{2}+|\beta|^{2}=1=\alpha_{1}^{2}+\alpha_{2}^{2}+\beta_{1}^{2}+\beta_{2}^{2} \tag{12.27}
\end{equation*}
$$

Therefore, topology of $S U(2)$ is $S 3$.
Topology of $S U(3)$ is an $S 3$ bundle over $S 5$ (see hep - th 9812006).
(c) For any representation of a Lie algebra $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$ one can get a conjugate representation by $\tilde{T}^{a}=-T^{a}$ because taking complex conjugate of the commutation relations give $\left[-T^{a *},-T^{b *}\right]=i f^{a b c}\left(-T^{c *}\right)$ for $f^{a b c}$ real. Since T^{a} are Hermitian complex conjugate of a covariant vector transforms as contervariant vector.
A general tenser with n upper, m lower indices can be used to denote a general (might be reducible) representation: $\rho_{i_{1} \cdots i_{m}}^{j_{1} \cdots j_{n}}$ transfers as

$$
\begin{equation*}
\rho \rightarrow\left[T_{a} \rho\right]_{i_{1} \cdots i_{m}}^{j_{1} \cdots j_{n}}=\sum_{l=1}^{n}\left[T_{a}\right]_{k}^{j_{l}} \rho_{i_{1} \cdots i_{m}}^{j_{1} \cdots k j_{n}}-\sum_{l=1}^{m}\left[T_{a}\right]_{i_{l}}^{k} \rho_{i_{1} \cdots k_{1} \cdots i_{m}}^{j_{1} \cdots j_{n}} \tag{12.28}
\end{equation*}
$$

From this transformation law, it is clear that one can impose symmetry among $\left(j_{1} \cdots j_{n}\right)$ and $\left(i_{1} \cdots i_{m}\right)$ and also one can impose tracelessness: $\delta_{j_{1}}^{i_{1}} \rho_{i_{1} \cdots i_{m}}^{j_{1} \cdots j_{n}}=0$
In fact every tenser with n symmetric upper and m symmetric lower index with the additional restriction of tracelessness corresponds to an irreducible representations.
δ_{i}^{j} transforms

$$
\begin{equation*}
\left[T^{a} \delta\right]_{j}^{i}=\left[T^{a}\right]_{j}^{k} \delta_{k}^{i}-\left[T^{a}\right]_{k}^{i} \delta_{j}^{k}=0 \tag{12.29}
\end{equation*}
$$

so it is invariant. $\epsilon_{i_{1} i_{2}}$ transforms as

$$
\begin{equation*}
\left[T^{a} \epsilon\right]_{i_{1} i_{2}}=\left[T^{a}\right]_{i_{1}}^{k} \epsilon_{k i_{2}}+\left[T^{a}\right]_{i_{2}}^{k} \epsilon_{i_{1} k} \tag{12.30}
\end{equation*}
$$

since ϵ is anti-symmetric only independent component is ϵ_{12}

$$
\begin{equation*}
\left[T^{a} \epsilon\right]_{12}=\left[T^{a}\right]_{1}^{1} \epsilon_{12}+\left[T^{a}\right]_{2}^{2} \epsilon_{12}=\epsilon_{12} \operatorname{tr}\left[T^{a}\right]=0 \tag{12.31}
\end{equation*}
$$

so ϵ is invariant.
You can raise indices with $\epsilon^{i j}$ so sufficient to consider only upper index tenser in $S U(2)$. For a tenser $\tau^{i_{1} i_{2} \cdots i_{n}}$ applying $\epsilon_{i_{r} i_{s}}$ on the antisymmetric components give invariant subspaces. Hence totally symmetric requirements are irreducible. Dimension of $\rho^{j_{1} \cdots j_{n}}$ (with $i_{1} \cdots i_{n}$ symmetrized) can be found as follows: i_{k} runs over 1,2 . So linearly independent components of ρ are given by partitioning the set $i_{1} \cdots i_{n}$ as $111 \cdots 1 / 222 \cdots 2$. The number of ways of doing this is the number of ways you can put one partition among n boxes, i.e., $\binom{n+1}{1}=n+1$ Note that this is the dimension of spin $-\frac{n}{2}$ representation.
From the transformation law L gave above we see that

$$
\begin{equation*}
\left[T_{a} \rho\right]^{j_{1} \cdots j_{n}}=\sum_{l=1}^{n}\left[T^{a}\right]_{k}^{j_{l}} \rho^{j_{1} \cdots j_{l-1} k j_{l+1} \cdots j_{n}} \tag{12.32}
\end{equation*}
$$

since $T_{3}=\frac{1}{2}\left(\begin{array}{ll}1 & \\ & -1\end{array}\right)$ and

$$
\begin{equation*}
\rho^{\left.i_{1} \cdots i\right) n}=\rho^{i_{1}} \otimes 1 \otimes \cdots \otimes 1+1 \otimes \rho^{i_{2}} \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes \rho^{i_{n}} \tag{12.33}
\end{equation*}
$$

where each covariant vector is a spin- $\frac{1}{2}$ representation, T_{3} reads the total S_{z} (z components of the spin) in the representation $\rho^{i_{1} \cdots i_{n}}$. This is in the range $\left(\frac{n}{2},-\frac{n}{2}\right)$ so $\rho^{i_{1} \cdots i_{n}}$ is indeed a spin $-\frac{n}{2}$ representation and each state in this representation is labeled by the eigenvalue of T_{3}. Bells are ringing.
(d) Tenser products of representation of the group is $R_{1} \otimes R_{2}$. Since group elements are obtained by erspenentrating the algebra $G=e^{T}$, tenser products of the representation of the algebra are of the form $r_{1} \otimes 1_{2}+1_{1} \otimes r_{2}$. This obviously satisfy the same commutation relations.
Let me only show the evaluation of $C_{2}(\rho)$ in the most non-trivial example, $C_{2}(27)$ in $S U(3)$. Consider the Clebsh-Gordon decomposition of a product representation:

$$
\begin{equation*}
\rho_{1} \otimes \rho_{2}=\sum_{i} \rho_{i} \tag{12.34}
\end{equation*}
$$

The way T^{a} acts on $\rho_{1} \otimes \rho_{2}$ is given above

$$
\begin{equation*}
T_{\rho_{1} \otimes \rho_{2}}^{a}=T_{\rho_{1}}^{a} \otimes 1_{\rho_{2}}+1_{\rho_{1}} \otimes T_{\rho_{1}}^{a} \tag{12.35}
\end{equation*}
$$

So

$$
\begin{equation*}
\operatorname{tr}\left(T_{\rho_{1} \otimes \rho_{2}}^{a} T_{\rho_{1} \otimes \rho_{2}}^{a}\right)=\left(C_{2}\left(\rho_{1}\right)+C_{2}\left(\rho_{2}\right)\right) d \rho_{1} d \rho_{2} \tag{12.36}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
T_{\rho_{1} \otimes \rho_{2}}^{a} & =\sum_{i} T_{\rho_{i}}^{a} \tag{12.37}\\
\operatorname{tr}\left(T_{\rho_{1} \otimes \rho_{2}}^{a} T_{\rho_{1} \otimes \rho_{2}}^{a}\right) & =\operatorname{tr}\left(\sum_{i} T_{\rho_{i}}^{a} \sum_{j} T_{\rho_{j}}^{a}\right) \tag{12.38}\\
& =\sum_{i} \operatorname{tr}\left(T_{\rho_{j}}^{a} T_{\rho_{j}}^{a}\right) \tag{12.39}\\
& =\sum_{i} C_{2}\left(\rho_{i}\right) d_{\rho_{i}} \tag{12.40}
\end{align*}
$$

Then,

$$
\begin{equation*}
\left(C_{2}\left(\rho_{1}\right)+C_{2}\left(\rho_{2}\right)\right) d \rho_{1} d \rho_{2}=\sum_{i} C_{2}\left(\rho_{i}\right) d_{\rho_{i}} \tag{12.41}
\end{equation*}
$$

27 occurs in the product of two 8 's:

$$
\begin{equation*}
8 \times 8=27+10+\overline{10}+8+8+1 \tag{12.42}
\end{equation*}
$$

You should have found that $C_{2}(8)=3, C_{2}(10)=6$. Plug these in:

$$
\begin{align*}
(3+3) \cdot 8 \cdot 8 & =C_{2}(27) \cdot 27+2 \cdot 6 \cdot 10+2 \cdot 3 \cdot 8+0 \tag{12.43}\\
8 \cdot 8 \cdot 6 & =27 C_{2}(27)+168 \tag{12.44}\\
C_{2}(27) & =\frac{216}{27} \tag{12.45}\\
& =8 \tag{12.46}
\end{align*}
$$

