12.2 Problem Set 2 Solutions

1. - I will use a basis m, which

$$
\begin{equation*}
\psi^{C}=i \gamma^{2} \psi^{*}=C \gamma^{\circ} \psi^{*} \tag{12.47}
\end{equation*}
$$

We can define left (light) handed Majorana fields as,

$$
\begin{align*}
& \omega=\psi_{L}+\left(\psi_{L}\right)^{C} \tag{12.48}\\
& \chi=\psi_{R}+\left(\psi_{R}\right)^{C} \tag{12.49}
\end{align*}
$$

so that

$$
\begin{align*}
& \omega=\omega^{C} \tag{12.50}\\
& \chi=\chi^{C} \tag{12.51}
\end{align*}
$$

Note that

$$
\begin{align*}
\left(\psi_{L}\right)^{C} & =\left(\psi^{C}\right)_{R} \tag{12.52}\\
\left(\psi_{R}\right)^{C} & =\left(\psi^{C}\right)_{L} \tag{12.53}
\end{align*}
$$

Then

$$
\begin{align*}
-\mu_{R} \bar{\psi} \psi & =-\mu_{R}\left(\overline{\psi_{R}}\left(\psi_{R}\right)^{C}+\overline{\psi_{R}^{C}} \psi_{R}\right) \tag{12.54}\\
-\mu_{L} \bar{\omega} \omega & =-\mu_{L}\left(\overline{\psi_{L}}\left(\psi_{L}\right)^{C}+\overline{\psi_{L}^{C}} \psi_{L}\right) \tag{12.55}
\end{align*}
$$

are the right (left) handed mass terms for Majorana fields.

- Generalizing to N flavor, $i, j=1, \cdots, N$, we have $-\mu_{i j} \overline{\psi^{C i}} \psi^{j}+h . c$

Using above definition for C and anti-symmetry of Grassmann variables are sees that $\mu_{i j}$ can be taken as symmetric.

- For one flavor case general Dirac and Majorana mass is

$$
\left(\begin{array}{ll}
\bar{\omega} & \bar{\chi}
\end{array}\right)\left(\begin{array}{cc}
-\mu_{L} & \frac{m}{2} \tag{12.56}\\
\frac{m}{2} & -\mu_{R}
\end{array}\right)\binom{\omega}{\chi}
$$

Since

$$
\begin{equation*}
\frac{m}{2}(\bar{\omega} \chi+\bar{\psi} \omega)=m\left(\overline{\psi_{L}} \psi_{R}+\overline{\psi_{R}} \psi_{L}\right)=\text { Dirac Mass } \tag{12.57}
\end{equation*}
$$

One can diagnolize this by a unitary transformation to get the eigenvalues (in case $\mu_{L}=0$ for instance) $\mu=\mu_{R}, \frac{m^{2}}{\mu_{R}}$

- This is an example of the "see-saw" mechanism. Although one can not right down relevant (dimension ≤ 4) Majorana mess term in standard model, one can in some GUT's, e.g. $S O(10)$. Therefore, the natural Majorana mass $\sim O\left(10^{15} \mathrm{Gev}\right)$, which is the GUT scale in typical theories. Then above mechanism would give a LH fermion with a tiny mass

$$
\begin{equation*}
\frac{m^{2}}{\mu} \sim \frac{(100 \mathrm{Gev})^{2}}{10^{15} \mathrm{Gev}} \sim 10^{-2} \mathrm{eV} \tag{12.58}
\end{equation*}
$$

which is consistent with observation of scalar neutrinos. Note that for the typical Dirac mass μ, I take ~ 100 Gev since they are obtained by Higgs much at weak scale.

- Same mechanism works for $N>1$ flavors in which case one diagonalizes the general mass make it with a unitary transformation.

2. (a) Let's begin with listing the matter content of $S \mu$ indicating the hypercharges:
Quarks:

$$
\begin{align*}
\rho_{L} & =\binom{u_{L}}{d_{L}}_{\frac{1}{6}},\binom{c_{L}}{s_{L}}_{\frac{1}{6}},\binom{t_{L}}{b_{L}}_{\frac{1}{6}} \tag{12.59}\\
q_{R \frac{2}{3}}^{u} & =u_{R}, c_{R}, t_{R} \tag{12.60}\\
q_{R-\frac{1}{3}}^{d} & =d_{R}, s_{R}, b_{R} \tag{12.61}
\end{align*}
$$

Leptons:

$$
\begin{align*}
l_{L} & =\binom{\nu_{e L}}{e_{L}}_{-\frac{1}{2}},\binom{\nu_{\mu L}}{\mu_{L}}_{-\frac{1}{2}},\binom{\nu_{\tau L}}{\tau_{L}}_{-\frac{1}{2}} \tag{12.62}\\
l_{R-1} & =l_{R}, \mu_{R}, \tau_{R} \tag{12.63}
\end{align*}
$$

Higgs:

$$
\begin{equation*}
\Phi=\binom{\emptyset^{+}}{\emptyset_{0}}_{\frac{1}{2}} \tag{12.64}
\end{equation*}
$$

We want to find a term with $B \neq 0$. Clearly this term should involve quarks. The restrictions are: $S U(3)$ color, $S U(2)$ weak, $U(1)_{Y}$ and Lorentz invariance. (l, ρ, τ separately are not fundamental). $S U(3)$ requires three combinations:

$$
\begin{align*}
3 \otimes 3 \otimes 3 & =1+8+8+10 \tag{12.65}\\
3^{*} \otimes 3^{*} \otimes 3^{*} & =1+8^{*}+8^{*}+10^{*} \tag{12.66}\\
3 \otimes 3^{*} & =1+8 \tag{12.67}
\end{align*}
$$

Last one can not violate B hence discarded. First two are $\rho \rho \rho$ (or $\overline{\rho^{c} \rho^{c} \rho^{c}}$) and $\overline{\rho \rho \rho}$ (or $\rho^{c} \rho^{c} \rho^{c}$) which are not Lorentz invariant unless we include another fermion which should be a lepton in order not to spoil $S U(3)_{\text {color }}$. Hence the lowest dimensional operators which has $B \neq 0$ are $\sim \rho \rho \rho l$ with dimension 6.
(b) There are four types: $\rho \rho \rho l, \rho^{*} \rho^{*} \rho^{*} l^{*}, \rho \rho \rho l^{*}, \rho^{*} \rho^{*} \rho^{*} l$. First two does not violate $B-L$, last two does. This problem amounts to see that last two are in violation of at last one of the after mentioned symmetries of $S \mu$. Consideration of $\rho \rho \rho l^{*}$ is sufficient:

- To have $S U(2)$ invariance we need even number of left handed: $\rho_{L} \rho_{L} \rho_{L} l_{L}^{*}$, $\rho_{L} \rho_{R}^{u} \rho_{R}^{u} l_{L}^{*}, \rho_{L} \rho_{R}^{u} \rho_{R}^{d} l_{L}^{*}, \rho_{L} \rho_{R}^{d} \rho_{R}^{d} l_{L}^{*}, \rho_{R}^{u} \rho_{R}^{u} \rho_{R}^{u} l_{R}^{*}, \rho_{R}^{u} \rho_{R}^{u} \rho_{R}^{d} l_{R}^{*}, \rho_{R}^{u} \rho_{R}^{d} \rho_{R}^{d} l_{R}^{*}, \rho_{R}^{d} \rho_{R}^{d} \rho_{R}^{d} l_{R}^{*}$.
- Note that ρ is either ρ or $\overline{\rho^{c}}$. l^{*} can only be a \bar{l}.
- None of the above can be Lorentz invariant hence it is impossible to violate $B-L$ with a dimension 6 operator.

Actually a generalization of above reasoning glons that $B-L$ can not be involved in $S \mu$ neither perturbatively nor non-perturbatively. However B L violation would after a nice explanation for observed baryon asymmetry in the universe. One nice feature of GUT's is that there are consistent GUT's with relevant $B-L$ violating terms (e.g. $S O(10)$).
(c) To violate L we need at least are lepton. If we insist to have only one lepton than we need to contract it with at least one quark. This would violate $S U(3)$ hence we need three quarks, but this term ($l \rho \rho \rho$) is dimension 6 , no way. Consider two leptons, in order to violate L these should have same lepton number, hence Majorana type contraction: $\overline{l_{L}^{c}} l_{L}$ or $\overline{l_{R}^{c}} l_{R}$. But these
have total hypercharge -1 and -2 each. To cancel this we are only left with ϕ 's to add. Therefore, we get $\overline{l_{L}^{c}} l_{L} \phi^{2}$ with dimension 5 or $\overline{l_{R}^{c}} l_{R} \phi^{4}$ with dimension 7. As ϕ gets a VEV by Higgs

$$
\begin{equation*}
\overline{l_{L}^{c}} l_{L} \phi^{2} \rightarrow \overline{l_{L}^{c}} l_{L} v^{2} \tag{12.68}
\end{equation*}
$$

becomes a Majorana mess term.
3. (a) $S U(2)$ in adjoint can be represented by

$$
\begin{align*}
\tau^{3} & =\left(\begin{array}{lll}
1 & & \\
& 0 & \\
& & -1
\end{array}\right) \tag{12.69}\\
\tau^{2} & =\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
& -i & \\
i & & -i \\
& i &
\end{array}\right) \tag{12.70}\\
\tau^{1} & =\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
& 1 & \\
1 & & 1 \\
& 1 &
\end{array}\right) \tag{12.71}
\end{align*}
$$

- To have a cross product representation under $S U(2) \times U(1)_{Y}$ all elements in the triplet should carry same hypercharge Y. Then the covariant derivative takes the form

$$
\begin{equation*}
\Delta_{\mu}=I_{\mu}+i g A_{\mu}^{a} \tau^{a}+i g^{\prime} B_{\mu} Y \tag{12.72}
\end{equation*}
$$

where, $Y=\left(\begin{array}{ccc}Y & & \\ & Y & \\ & & Y\end{array}\right)$

- We want to give a VEV to triplet Higgs

$$
\phi^{3}=\left(\begin{array}{l}
\emptyset_{1} \tag{12.73}\\
\emptyset_{2} \\
\emptyset_{3}
\end{array}\right)
$$

such that only one of the linear combinations of generators $\tau^{\prime}, \tau^{2}, \tau^{3}$, Y is unbroken. This will be the electric charge Q. This will be a diagonal $U(1)$, hence

$$
\begin{equation*}
Q=a \tau^{3}+b Y \tag{12.74}
\end{equation*}
$$

overall constant can be observed into charge

$$
\begin{equation*}
Q=\tau^{3}+b Y \tag{12.75}
\end{equation*}
$$

b is arbitrary but for convenience we take as 1

$$
Q=\tau^{3}+Y=\left(\begin{array}{ccc}
Y+1 & 0 & 0 \tag{12.76}\\
0 & Y & 0 \\
0 & 0 & Y-1
\end{array}\right)
$$

This should have a zero eigenvalue, hence $Y \in\{+1,-1,0\}$. However in case $Y=0$ only τ^{\prime} and τ^{2} are broken by Y, hence we get $S U(2) \times$ 0 $U(1) \rightarrow U(1) \times U(1)$. We should choose $Y \in\{+1,-1\}$.
(b) Consider both a doublet ϕ^{2} with the covariant derivative

$$
\begin{equation*}
D_{\mu} \phi^{2}=\left(I_{\mu}+i g \frac{\sigma^{a}}{2} A_{\mu}^{*}+i g^{\prime} \frac{1}{2} B_{\mu}\right) \phi^{2} \tag{12.77}
\end{equation*}
$$

and a triplet with

$$
\begin{equation*}
D_{\mu} \phi^{3}=\left(I_{\mu}+i g A_{\mu}^{*} \tau^{a}+i g^{\prime} Y B_{\mu}\right) \phi^{3} \tag{12.78}
\end{equation*}
$$

Expanding out $\left|D_{\mu \phi^{2}}\right|^{2}+\left|D_{\mu} \phi^{3}\right|^{2}$ for $\left|\phi^{2}\right|^{2}=v_{2}^{2},\left|\phi^{3}\right|^{2}=v_{3}^{2}$ we get for $Y= \pm 1$:

$$
\begin{align*}
m_{w \pm}^{2} & =\frac{1}{4} g^{2}\left(v_{2}^{2}+2 v_{3}^{2}\right) \tag{12.79}\\
m_{z}^{2} & =\frac{1}{4}\left(g^{2}+\rho^{\prime 2}\right)\left(v_{2}^{2}+4 v_{3}^{2}\right) \tag{12.80}\\
m_{\gamma} & =0 \tag{12.81}
\end{align*}
$$

If we keep ϕ^{2} we have the option $Y=0$ in contrast to above since ϕ^{2} already breaks to $U(1)$. For this case, $Y=0$:

$$
\begin{align*}
m_{w \pm}^{2} & =\frac{1}{4}\left(v_{2}^{2}+4 v_{3}^{2}\right) \tag{12.82}\\
m_{z}^{2} & =\frac{1}{4}\left(g^{2}+\rho^{\prime 2}\right) v_{2}^{2} \tag{12.83}\\
m_{\gamma} & =0 \tag{12.84}
\end{align*}
$$

Note that m_{z}^{2} is entirely coming from usual doublet Higgs.

- $\frac{v_{3}}{v_{2}}$ can be constrained as follows: See H. E. Haber, "Minimal and Nonminimal Higgs Bosons," in "Phenomenology of $S \mu$ and Beyond," D.P. Rey and P. Rey world scientific, 1989 (this is in library: QC793.W66 1989). An experimental fact that

$$
\begin{equation*}
\rho \equiv \frac{\mu_{w}^{2}}{\mu_{z}^{2} \cos ^{2} \theta_{w}} \tag{12.85}
\end{equation*}
$$

is very close to 1 :

$$
\begin{equation*}
\rho=1-\epsilon^{2}, 0<\epsilon \ll 1 \tag{12.86}
\end{equation*}
$$

On the other hand for a general Higgs content one can express ρ in term so f the casming of $S U(2)$ and $U(1)$ as:

$$
\begin{equation*}
\rho=\frac{\sum_{T, Y}\left(T(T+1)-Y^{2}\right)\left|<\phi_{T, Y}>\right|^{2}}{\sum_{T, Y} 2 Y^{2}\left|<\phi_{T, Y}>\right|^{2}} \tag{12.87}
\end{equation*}
$$

where T, Y denote the representation, $\left\langle\phi_{T, Y}\right\rangle$ is the VEV of particular Higgs in the sum. Note that for $T=\frac{1}{2}, Y= \pm \frac{1}{2}$ one naturally gets $\rho=1$ (for any number of Higgs fields with $T=1, Y= \pm \frac{1}{2}$). For our problem we get

$$
\begin{equation*}
\rho=\frac{\frac{1}{2} v_{2}^{2}+v_{3}^{2}}{\frac{1}{2} v_{2}^{2}+2 v_{3}^{2}}=\frac{1+2\left(\frac{v_{3}}{v_{2}}\right)^{2}}{1+4\left(\frac{v_{3}}{v_{2}}\right)^{2}}=1-\epsilon^{2} \tag{12.88}
\end{equation*}
$$

Therefore, $\frac{v_{3}}{v_{2}}$ should be very small.

$$
\begin{equation*}
\rho \simeq 1-2\left(\frac{v_{3}}{v_{2}}\right)^{2}=1-\epsilon \Rightarrow \frac{v_{3}}{v_{2}}=\frac{\epsilon}{\sqrt{2}} \ll 1 \tag{12.89}
\end{equation*}
$$

This shows that adding a new type of Higgs field to the usual doublet is highly constrained by experiments. However, one can clearly add any number of doublets without violating $\rho=1-\epsilon$ constraint. This possibly is explored in the next problem.
(c) Initially we have $6+4=10$ real D.O.F. 3 is eaten and we have left with 7 real scalar D.O.F. One of them is usual Higgs with $Q=0$, isospin $-\frac{1}{2}$. The rest for $Y= \pm 1$ are two neutral scalars, two scalars of charge ± 1, two scalars of charge ± 2 as clear from above Q matrix.
(d) We now have the possibility of a Higgs field with $Y= \pm 1$. Recall from Problem 2 that the biggest constraint for a L-violating term was imposed by preserving hypercharge. Now we can write down $\bar{l}_{L}^{c} l_{L} \phi_{+1}^{3}$, which is dimension 4 hence marginal. Note however, that lepton number violating
processes are quick constrained by experiments hence $\frac{v_{3}}{v_{2}}$ should again be very small in accord with our discussion in previous part.
4. (a) We have two Higgs doublets ϕ_{1} and ϕ_{2} with condensation

$$
\begin{align*}
& <\phi_{1}>=\binom{0}{v_{1}} \tag{12.90}\\
& <\phi_{2}>=\binom{0}{v_{2}} \tag{12.91}
\end{align*}
$$

- Then the masses of the gauge fields are

$$
\begin{align*}
m_{w \pm}^{2} & =\frac{1}{4} g^{2}\left(v_{1}^{2}+v_{2}^{2}\right) \tag{12.92}\\
m_{z}^{2} & =\frac{1}{4}\left(\rho^{2}+\rho^{\prime 2}\right)\left(v_{1}^{2}+v_{3}^{2}\right) \tag{12.93}\\
m_{\gamma} & =0 \tag{12.94}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\frac{m_{w}^{2}}{m_{z}^{2}}=\frac{g^{2}}{g^{2}+g^{\prime 2}} \tag{12.95}
\end{equation*}
$$

is same as in the case of single doublet.

- Furthermore, using the general formula for ρ (from previous problem) we saw that

$$
\begin{equation*}
\rho=1=\frac{m_{w}^{2}}{m_{z}^{2} \cos ^{2} \theta_{w}} \tag{12.96}
\end{equation*}
$$

Therefore, θ_{w} is also the same as before.

- Started with 8 real scalar D.O.F. 3 absorbed into congitiduval modes of gauge mesons $w \pm$ and z. Therefore, 5 left out of which one is the usual neutral Higgs: $\phi_{1}=\binom{0}{v_{1}+h}, 4$ others are $\phi_{2}=\binom{\alpha+i \beta}{\gamma+i \delta}$, α and β are charge $+1(\alpha+i \beta),-1(\alpha-i \beta), \gamma$ and δ are both charge zero.
(b) See H. E. Haber in QC793.W66 1989
(c) General Yukawa coupling to quarks reads

$$
\begin{equation*}
\lambda_{1} \overline{q_{L}^{\alpha}} \phi_{1}^{\alpha} q_{R}^{d}+\lambda_{2} \epsilon_{\alpha \beta} \overline{q_{L}^{\alpha}} \phi_{1}^{* \beta} q_{d}^{u}+\lambda_{3} \overline{q_{L}^{\alpha}} \phi_{2}^{\alpha} q_{R}^{d}+\lambda_{4} \epsilon_{\alpha \beta} \overline{q_{L}^{\alpha}} \phi_{1}^{* \beta} q_{R}^{u}+ \tag{12.97}
\end{equation*}
$$

However, under new $U(1), \phi_{1}$ has charge $-1, \phi_{2}$ has $+1, q_{R}^{d}, q_{R}^{u}$ has +1 then $2^{\text {nd }}$ and $3^{\text {rd }}$ terms not allowed.

- This means ϕ_{1} cannot couple to q_{d}^{u}, ϕ_{2} cannot couple to q_{R}^{d} as in part above.
- Extra restriction on the potential in the previous part is that $\left(\phi_{1}^{+} \phi_{2}\right)\left(\phi_{2} \phi_{1}^{+}\right)$ term is not allowed.
- From continuous $U(1)$ breaking we get an additional Goldstone boson, the axion. It is proportional to $T v_{2}$, where T is the $U(1)$ generator that generates $\phi_{1} \rightarrow \phi_{1} e^{-i \lambda}, \phi_{2} \rightarrow \phi_{2} e^{i \lambda}$. Therefore, its coupling to quarks are

$$
\begin{equation*}
\epsilon_{\alpha \beta} \overline{q_{L}^{\alpha}} q_{R}^{u} \phi_{2}^{* \beta} \rightarrow\left(\overline{u_{L}} u_{R} \lambda_{u}+\overline{c_{L}} c_{R} \lambda_{c}+\overline{t_{L}} t_{R} \lambda_{t}\right) \underbrace{a x}_{\text {axion }} \tag{12.98}
\end{equation*}
$$

