12.4 Problem Set 4 Solutions

1. A nice derivation on the theoretical lower bound on Higgs mass (note experimental lower bound is $\mu_{H} \geq 120 \mathrm{GeV}$ by now) can be found in G. Attarelli, G. Isideri, Phys. Lett. B337 p141 ('94) (available on the SPIRES). This uses two-loop corrections and the result for ($\mu_{t} \simeq 174 \mathrm{GeV}$) as a function of cut-off scale Λ is as follows:

Figure 12.41: Lower Bound.
I will sketch the argument, see the paper for details.
Tree level Higgs potential is

$$
\begin{equation*}
V_{t r e e}=-\frac{\mu_{0} \emptyset^{2}}{2}+\frac{\lambda_{0} \emptyset^{4}}{24} \tag{12.164}
\end{equation*}
$$

where we fix λ_{0} and μ_{0} at renormalization scale $\mu_{0}=\mu=v \simeq 245 \mathrm{GeV}$ (at weak scale).

As $\mu \rightarrow \mu+\delta \mu$, Higgs field strength scales as $\emptyset \rightarrow \emptyset(1+\delta \eta)$ and $\lambda \rightarrow \lambda+\delta \lambda$. Accordingly the renormalized potential is

$$
\begin{equation*}
V_{R e n}=\frac{1}{24} \lambda(\mu)((1+\delta \eta(\mu)) \emptyset)^{4} \tag{12.165}
\end{equation*}
$$

For one-loop corrections we can write

$$
\begin{equation*}
1+\delta \eta \simeq e^{\delta \eta}=\exp \left[-\int_{O}^{\log \frac{\Lambda}{\mu_{0}}} \gamma\left[t^{\prime}\right] d t\right] \tag{12.166}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma \equiv-\frac{\mu}{\delta \mu} \delta \eta=-\frac{\delta \eta}{\delta \log \frac{\mu}{\mu_{0}}} \equiv-\frac{\delta \eta}{\delta t^{\prime}} \tag{12.167}
\end{equation*}
$$

These one-loop effects can turn the tail of $V_{\text {tree }}(\emptyset)$ in downwards for large \emptyset hence $V_{\text {Ren }}(\emptyset)$ may become unstable.

Figure 12.42: $V_{\text {tree }}$.
From Equation 12.165 the condition for stability is clearly

$$
\begin{equation*}
\lambda(\mu)>0 \tag{12.168}
\end{equation*}
$$

Thus we shall look at how λ evolves:

$$
\begin{equation*}
\frac{\lambda}{t}=\beta(t)=\frac{\partial}{\partial \ln \mu}\left(-\delta_{\lambda}+2 \delta_{\emptyset}\right) \tag{12.169}
\end{equation*}
$$

where δ_{λ} is the counterterm for

Figure 12.43: δ_{λ} Equation 12.169.
and δ_{\emptyset} is Higgs self-renormalization

Figure 12.44: δ_{\emptyset} Equation 12.169.
We just draw contributing diagrams and give the result:
take only top quark.
$\rightarrow \delta_{\lambda}$ (from log-divergent pieces)

Figure 12.45: Contributing Diagrams δ_{λ}.

Figure 12.46: Contributing Diagrams δ_{\emptyset}.
take only top.
$\rightarrow \delta_{\emptyset}$ (from log-divergent pieces)
Therefore, (see above mentioned paper) for the result. Actually I will quote two-loop result:

$$
\begin{equation*}
\frac{d \lambda}{d t}=\frac{1}{16 \pi^{2}}\left[4 \lambda^{2}+12 \lambda g_{t}^{2}-36 g_{t}^{4}-9 \lambda g_{1}^{2}-3 \lambda g_{2}^{2}+\frac{9}{2} g_{1}^{2} g_{2}^{2}+\frac{27}{4} g_{1}^{4}\right] \tag{12.170}
\end{equation*}
$$

where g_{t} is the Yukawa coupling for top quark, g_{1} and g_{2} are $U(1)_{Y}$ and $S U(2)_{W}$ coupling.

We have

$$
\begin{align*}
g_{t}\left(\mu_{0}\right) & =\frac{\sqrt{2} m_{t}}{V}\left(a+\delta_{t}\left(\mu_{0}\right)\right) \tag{12.171}\\
\lambda_{t}\left(\mu_{0}\right) & =\frac{3 m_{H}^{2}}{V^{2}}\left(a+\delta_{\lambda}\left(\mu_{0}\right)\right) \tag{12.172}
\end{align*}
$$

at $\mu_{0}=$ weak scale $\simeq 100 \mathrm{GeV}$. (note that the funny factors of 3 in $\frac{\lambda}{m_{H}^{2}}$ is coming from my unusual $V_{\text {tree }}$ definition).
Therefore, we see that λ can become negative, hence $V_{\text {Ren }}$ unstable for particular values of Λ, m_{t}^{2} and m_{H}^{2}. To find the range of m_{H}^{2} for which $\lambda>0$ fix $m_{t}^{2} \simeq 174 G e V$ (ignore QCD corrections). Then solve the above equation for $\frac{d \lambda}{d t}$ numerically and the one gets the range as shown in Figure 12.41.
2. Consider

$$
\begin{equation*}
L[\emptyset]=\frac{1}{2} \partial_{\mu} \emptyset \partial^{\mu} \emptyset-V(\emptyset) \tag{12.173}
\end{equation*}
$$

Suppose we expand around $\langle\emptyset\rangle=v(x)$ where $V(\emptyset)$ looks like

Figure 12.47: $V(\emptyset)$.
For simplicity lets take

$$
\begin{equation*}
V(\emptyset) \simeq \omega \emptyset^{2}+C \tag{12.174}
\end{equation*}
$$

with $\omega<0$.
The ground state is a coherent state such that, for

$$
\begin{align*}
\emptyset(\vec{x}) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 k_{0}}}\left(a_{k} e^{i \vec{k} \cdot \vec{x}}+a_{k}^{+} e^{-i \vec{k} \cdot \vec{x}}\right)=\hat{\emptyset_{+}}+\hat{\emptyset_{-}} \tag{12.175}\\
\hat{\emptyset_{+}}(\vec{x}) \mid \xi> & \left.=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 k_{0}}} \xi(k) e^{i \vec{k} \cdot \vec{x}} \right\rvert\, \xi> \tag{12.176}
\end{align*}
$$

Lets consider a $0+1$ dimensional system for simplicity:

$$
\begin{align*}
\hat{H} & =\omega\left[a^{t} a+\frac{1}{2}\right] \tag{12.177}\\
<\xi|H| \xi> & =? \tag{12.178}
\end{align*}
$$

Solution to equation $a|\xi>=\xi| \xi>$ is $\left|\xi>=e^{\xi a^{t}}\right| o>$ in this case

$$
\begin{equation*}
<\xi|H| \xi>=\omega<o\left|e^{\xi a}\left(a^{t} a+\frac{1}{2}\right) e^{\xi a^{t}}\right| o>=\omega\left(\xi^{2}+\frac{1}{2}\right) e^{\xi^{2}} \tag{12.179}
\end{equation*}
$$

Consider an excitation:

$$
\begin{equation*}
<\xi\left|a H a^{t}\right| \xi>=\frac{d}{d \xi} \frac{d}{d \xi^{\prime}}<\xi^{\prime}|H| \xi>\left.\right|_{\xi=\xi^{\prime}}=\frac{d}{d \xi} \frac{d}{d \xi^{\prime}}\left(\xi \xi^{\prime}+\frac{1}{2}\right) e^{\xi \xi^{\prime}} \omega><\xi|H| \xi> \tag{12.180}
\end{equation*}
$$

Excitation get lower and lower energy (straightforward) since $\omega<0$ (for classical unstable potential).
This reasoning is easily generalized to more non-trivial potentials which exhibit non-stable behavior classically and to $4 D$ QFT, in which case

$$
\begin{equation*}
\left|\xi>=\exp \left[\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 k_{0}}} \xi(k) e^{i \vec{k} \cdot \vec{x}} a_{k}^{t}\right]\right| 0> \tag{12.181}
\end{equation*}
$$

3. (Thanks to Guide Festuccier) Observed value of

$$
\begin{equation*}
\left.\frac{m_{b}}{m_{\tau}}\right|_{\mu_{\mu_{z}}} \simeq 1.62 \tag{12.182}
\end{equation*}
$$

Both in supersymmetric and non-supersymmetric GUTs b and τ are in the same multiplet and get the same mass through Higgs coupling, hence

$$
\begin{equation*}
\left.\frac{m_{b}}{m_{\tau}}\right|_{\mu_{\mu_{G U T}}}=1 \tag{12.183}
\end{equation*}
$$

To obtain the value at $\mu=\mu_{z}$ we should run the Yukawa couplings down to weak scale. One can ignore Yukawa couplings of other matter except top-quark:

MSSM:

$$
\begin{align*}
\frac{d}{d t} \ln \lambda_{t} & =\frac{1}{16 \pi^{2}}\left[6 \lambda_{t}^{2}+\lambda_{b}^{2}-\sum c_{i} g_{i}^{2}\right] \tag{12.184}\\
\frac{d}{d t} \ln \lambda_{b} & =\frac{1}{16 \pi^{2}}\left[-6 \lambda_{b}^{2}+\lambda_{\tau}^{2}-\sum c_{i}^{\prime} g_{i}^{2}\right] \tag{12.185}\\
\frac{d}{d \tau} \ln \lambda_{t} & =\frac{1}{16 \pi^{2}}\left[6 \lambda_{\tau}^{2}-3 \lambda_{b}^{2}-\sum c_{i}^{\prime \prime} g_{i}^{2}\right] \tag{12.186}\\
t & =\ln \left(\frac{\mu}{\mu_{z}}\right) \tag{12.187}
\end{align*}
$$

where g_{i} are $((U(1), S U(2)$, and $S U(3))$ coupling for $i=1,2,3$ respectively and the coefficients are:

MSSM:

$$
\begin{align*}
c_{i} & =\left(\frac{13}{5}, 3, \frac{16}{3}\right) \tag{12.188}\\
c_{i}^{\prime} & =\left(\frac{7}{15}, 3, \frac{16}{3}\right) \tag{12.189}\\
c_{i}^{\prime \prime} & =\left(\frac{9}{5}, 3,0\right) \tag{12.190}
\end{align*}
$$

SM:

$$
\begin{align*}
c_{i} & =\left(\frac{17}{20}, \frac{9}{4}, 8\right) \tag{12.191}\\
c_{i}^{\prime} & =\left(\frac{1}{4}, \frac{9}{4}, 8\right) \tag{12.192}\\
c_{i}^{\prime \prime} & =\left(\frac{9}{4}, \frac{9}{4}, 0\right) \tag{12.193}
\end{align*}
$$

Subtract equations for λ_{b} and λ_{τ} and neglect λ_{b} with respect to λ_{t} to get MSSM:

$$
\begin{equation*}
2 \pi \frac{d}{d t} \ln \left(\frac{\lambda_{b}}{\lambda_{\tau}}\right)^{2} \simeq \frac{1}{4 \pi}\left(\lambda_{t^{2}}-\frac{16}{3} g_{3}^{2}+\frac{20}{15} g_{1}^{2}\right) \tag{12.194}
\end{equation*}
$$

SM:

$$
\begin{equation*}
2 \pi \frac{d}{d t} \ln \left(\frac{\lambda_{b}}{\lambda_{\tau}}\right)^{2} \simeq \frac{1}{4 \pi}\left(\lambda_{t^{2}}-8 g_{3}^{2}+2 g_{1}^{2}\right) \tag{12.195}
\end{equation*}
$$

One straightforwardly gets
MSSM:

$$
\begin{equation*}
\frac{m_{b}}{m_{\tau}}\left(\mu_{z}\right)=\left(e^{-\frac{1}{16 \pi^{2}} \int_{0}^{t\left(\mu_{G U T}\right)} \lambda_{t}^{2} d t^{\prime}}\right)\left(\frac{\alpha_{3}\left(\mu_{z}\right)}{\alpha_{3}\left(\mu_{G U T}\right)}\right)^{\frac{8}{9}} \tag{12.196}
\end{equation*}
$$

(ignoring $O\left(g_{1}^{2}\right)$ with respect to $\left.O\left(g_{2}^{2}\right)\right)$.
SM:

$$
\begin{equation*}
\frac{m_{b}}{m_{\tau}}\left(\mu_{z}\right)=\left(e^{-\frac{1}{16 \pi^{2}} \int_{0}^{t\left(\mu_{G U T}\right)} \lambda_{t}^{2} d t^{\prime}}\right)\left(\frac{\alpha_{3}\left(\mu_{z}\right)}{\alpha_{3}\left(\mu_{G U T}\right)}\right)^{\frac{4}{7}} \tag{12.197}
\end{equation*}
$$

We have to obtain $\alpha_{3}=\alpha_{2}=\left.\alpha_{1}\right|_{G U T}$ in MSSM vs. SM.
This is easily done by looking at one-loop running of MSSM and SM couplings and their unification at $\mu_{G U T}$, see for instance R. Mohapatra hep-th 9801235 r2.

$$
\begin{align*}
\alpha & \equiv \frac{1}{(4 \pi)^{2}} g^{2} \tag{12.198}\\
\alpha_{G U T}^{M S S M} & \simeq \frac{1}{24} \tag{12.199}\\
\alpha_{G U T}^{S M} & \simeq \frac{1}{42} \tag{12.200}
\end{align*}
$$

One obtains

$$
\begin{align*}
\left.\frac{m_{b}}{m_{z}}\left(\mu_{z}\right)\right|_{M S S M} & =\left.\exp \left(-\frac{1}{16 \pi^{2}} \int \lambda_{t}^{2}\right)\right|_{M S S M} \times 2.56 \tag{12.201}\\
\left.\frac{m_{b}}{m_{z}}\left(\mu_{z}\right)\right|_{S M} & =\left.\exp \left(-\frac{1}{16 \pi^{2}} \int \lambda_{t}^{2}\right)\right|_{S M} \times 2.51 \tag{12.202}
\end{align*}
$$

The difference mostly depends of the running of top-Yakawa coupling in MSSM vs. SM. According to R. H. Mohapatra, ("Suppersymmetry and Unification," Springer-Verlag, 2003) $\frac{m_{b}}{m_{\tau}} \simeq 3$ in SM which is bad as $\frac{m_{b}}{m_{\tau}} \simeq 1.62$ in reality and, $\frac{m_{b}}{m_{\tau}} \simeq 2.3$ in MSSM. But the latter result is model-dependent. Especially on the particular breaking mechanism.

