Chapter 11

Lattice Gauge

As I have mentioned repeatedly, this is the ultimate definition of QCD. (For electroweak theory, there is no satisfactory non-perturbative definition). I also discussed before the process of dimensional transmutation, you should refer back to this after we have gone through the explicit construction of LGT.

Agenda here:

1. Formulation of pure gauge theory.
2. Formulation of fermion theory, doubling phenomenon.
3. Confinement in strong coupling

Euclideanize, introduces $4 d$ cubic lattice. On links introduce (for QCD) $S U(3)$ matrices $\underbrace{U_{n_{1}, n_{2}}}_{\text {site lables }}$.

They should be thought of as parallel transporters, i.e., solution of the equation

$$
\begin{align*}
\nabla_{\mu} U & =0 \tag{11.1}\\
& =\partial_{\mu} U+i g A_{\mu} U \tag{11.2}\\
U & =P(\text { ordered integral }) \tag{11.3}
\end{align*}
$$

Thus, if, say,

$$
\begin{equation*}
\psi(x)=U\left(x, x_{0}\right) \psi_{0} \tag{11.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\nabla_{\mu} \psi=0 \tag{11.5}
\end{equation*}
$$

Note that there is path-dependence in this definition of $\psi(x)$ and the parallelism is only along the path.

Let me emphesis, though, that this is only a mnemonic, for relating to the (formal) continuous theory. LGT itself does not know about A.

$$
\begin{equation*}
U_{n_{1} n_{2}}=U_{n_{2} n_{1}}^{-1} \tag{11.6}
\end{equation*}
$$

We will enforce a gauge symmetry

$$
\begin{equation*}
U_{n_{1} n_{2}} \rightarrow \Omega\left(n_{1}\right) U_{n_{1} n_{2}} \Omega^{-1}\left(n_{2}\right) \tag{11.7}
\end{equation*}
$$

with site-dependent $\Omega(n) \in S U(3)$. Thus, the symmetry group is $S U(3)^{Z^{4}}$
The simplest nontrivial local invariant is the trace around a plaquette

Figure 11.1: Plaquette.

$$
\begin{equation*}
\operatorname{tr} U_{n, n+\hat{x}} U_{n+\hat{x}, n+\hat{x}+\hat{y}} U_{n+\hat{x}+\hat{y}, n+\hat{y}} U_{n+\hat{y}, n} \equiv \operatorname{tr} \square_{n, x y} \tag{11.8}
\end{equation*}
$$

For small fluctuations this is ≈ 3
This inspires the action

$$
\begin{equation*}
S=\frac{c}{g^{2}} \sum_{\text {plaquettes }}(3-t r \square) \tag{11.9}
\end{equation*}
$$

where, $c=\frac{1}{24}$ to match continuous conventions.
To be completely explicit we should also specify the measure. It is the product of Haar measures $\prod_{\text {links }}[d U]$

$$
\begin{align*}
{[d U] } & =\int U^{-1} d U \underbrace{\wedge \cdots \wedge}_{8 \text { times }} U^{-1} d U \tag{11.10}\\
& =\int \underbrace{d x_{i}}_{\begin{array}{c}
\text { group manifold } \\
\text { parametrization of }
\end{array}} \underbrace{\text { det }}_{\text {jacobian }} \underbrace{\| \frac{U^{-1}(x) d U(x)}{\partial x_{i}}}_{3 \times 3 \text { traceless Hermitean }} \| \text {-use normalized b(d.si.11) }
\end{align*}
$$

Crucial property is

$$
\begin{equation*}
\left[d\left(U_{0} U\right)\right]=[d U] \tag{11.12}
\end{equation*}
$$

thus

$$
\begin{equation*}
\int[d U](\text { non }- \text { singlet })=0 \tag{11.13}
\end{equation*}
$$

e.g.

$$
\begin{align*}
\int[d U] U & =\int\left[d\left(U_{0} U\right)\right] U \tag{11.14}\\
& =\int[d \tilde{U}] U_{0}^{-1} \tilde{U} \tag{11.15}\\
& =U_{0}^{-1} \int[d U] U \tag{11.16}\\
\int[d U] U & =0 \tag{11.17}
\end{align*}
$$

Note:

1. For small fluctuations, first non-trivial term is quadratic. Thus it must match continuous $\int \operatorname{tr} G_{\mu \nu} G_{\mu \nu}$
2. Everything is numerical - no units (\rightarrow dimensional transmutation).
3. Everything is finite.
4. Everything is algorithmic.
5. No gauge fixing required.

Fermions (quarks) live on sites they transform as

$$
\begin{equation*}
\psi_{n} \rightarrow U \psi_{n} \tag{11.18}
\end{equation*}
$$

The simplest kinetic energy is

$$
\begin{equation*}
\frac{1}{2 i} \sum_{n, \text { unit displacement }, \delta} \bar{\psi}_{n+\delta} \gamma_{\delta} U_{n+\delta, n} \psi_{n} \tag{11.19}
\end{equation*}
$$

(i.e., $\gamma_{\hat{x}}=\gamma_{1}, \gamma_{-\hat{x}}=-\gamma_{1}, \cdots$)

Consider $U \approx 1$, plane wave

$$
\begin{equation*}
\psi_{n} \sim e^{i p . n} S \tag{11.20}
\end{equation*}
$$

$(p . n=\underbrace{p_{1} n_{1}}_{\text {integer }}+p_{2} n_{2}+p_{3} n_{3}+p_{4} n_{4})$.
We have

$$
\begin{equation*}
\frac{1}{2 i} \sum_{n}\left(\bar{\psi}_{n+\hat{x}}-\bar{\psi}_{n-\hat{x}}\right) \gamma_{\hat{x}} \psi_{n} \rightarrow \sin p_{x} \gamma_{\hat{x}} \tag{11.21}
\end{equation*}
$$

so inverse propagator $\gamma_{i} \sim p_{i}$ low energy states ($=$ poles of propagator) for

$$
\begin{align*}
\sum_{i}\left(\gamma_{i} \sin p_{i}\right)^{2} & =0 \tag{11.22}\\
& =\sum_{i} \sin ^{2} p_{i} \tag{11.23}
\end{align*}
$$

This occurs near $p_{i} \approx 0-$ smooth fields, but also for any $p_{i}=\pi$
Near $p_{i}=\pi$ the direction of E as p_{i} is reversed, so chirality is opposite.
This introduces 16 branches, where we wanted 1 . You can scheme this effect but not eliminate it, by simple modifications. Recently more basic methods, involving adding considerable additional structure (\approx extra dimensions, $4 d$ domain wall) have emerged.

The brutal way (Wilson) is to add

$$
\begin{equation*}
-\frac{1}{2} \sum_{n, \delta} \bar{\psi}_{n+\delta} U \psi_{n}+\underbrace{4 \sum \bar{\psi}_{n} \psi_{n}}_{4-\cos p_{x}-\cos p_{y}-\cos p_{z}-\cos p_{\tau}} \tag{11.24}
\end{equation*}
$$

This eliminates the small energy at any $\cos p=-1$. It also, of course, violates chiral symmetry explicitly. The 4 must actually, be tuned, in an interaction dependent way, to get a light branch.

Massive quarks will stay put, so adding a massive quark-antiquark pair separated at distance R for time T inserts U matrices.

Figure 11.2: RT.
To determine the potential therefore we evaluate

$$
\begin{equation*}
e^{-V(R) T}=\lim _{T \rightarrow \infty} \frac{\operatorname{tr} \int[d U] \int e^{-\frac{c}{g^{2} \sum_{\text {plaquette }} \square}}}{\int[d U] \int e^{-\frac{f}{g^{2} \sum \square}}} \tag{11.25}
\end{equation*}
$$

In story coupling, expand the action

$$
\begin{equation*}
\left.e^{-\frac{c}{g^{2}} \sum D}=\prod\left(1-\frac{c}{g^{2}} \sum \square \cdots\right)\right) \tag{11.26}
\end{equation*}
$$

The 1 term works fine in the denominator, but the integration over links appearing in the large loop will vanish. To get a non-zero answer we must pair these links.

Figure 11.3: Sheet.
Keep going until the whole sheet is filled in. This gives a factor

$$
\begin{equation*}
e^{-V(R) T} \sim\left(\frac{1}{g^{2}}\right)^{R T} \tag{11.27}
\end{equation*}
$$

so $V(R) \propto R$.
Linear potential (\Rightarrow confinement) is manifest at strong coupling. Of course, the continuous theory - fine lattice spacing - corresponds to weak coupling, as we saw earlier. If there is no phase transition, we get confinement there too. This has been shown numerically for QCD. QED $(U(1))$, on the other hand, has a phase transition.

