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Chapter 7


Chiral Symmetry


Chiral symmetry in the strong interaction (and specifically in QCD). Exploiting an 
approximate, hidden symmetry to simply description of πi’s and their interaction 
weak processes involving hadrons (recently) some modern processes. 

Leading ideas (predicting QCD) : 

1. There is a good approximate symmetry of the strong interaction under algebra 
SU(2)L × SU(2)R (or SU(3)L × SU(3)R) with SU(2)L+R = isospin. Small 
instincs breaking. 

2. This symmetry is spontaneously violated in the ground state. Pseudoscalar 
mesons (π, κ, ν) are collective modes (Nambu-Goldstone bosons) associated with 
broken symmetry direction. 

3. The generators of these symmetries appear in the electroweak interactions. In 
the standard model, these hypotheses are consequences of 

mu, md � ΛQCD (7.1) 

ms ≤ ΛQCD (7.2) 
¯< ¯ ¯uu >=< dd >=< ss >= 0 (7.3) 

in massless limit. 

N.B. : It is very important that turning of the masses is a soft perturbation so 
that we can do perturbation theory around the massless limit. 

¯¯ ¯LQCD = Lm=0 + muuu + mddd + msss (7.4) 

Note: tricky PT due to massless particles. 
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The specific realization in QCD is more powerful: 

(a) Link to PQCD – corrections 

(b) Concrete realization of breaking


¯
i. L1 transforms as (3, 3) + (3̄, 3) under SU(3)L × SU(3)R 

ii. Contributions from anomalies as mentions above. 

7.1 History and Sketch of Example Application 

Goldberger-Treiman formula (1957) 

gAMN 
gπNN = (7.5) 

fπ 

This works well, but their derivation was cheesy. 
Nambu (1960-62) relate to approximate symmetry and correlate with lightness of 

π mesons. 

< O js π > fπpµ (measured in π → µν) (7.6) µ|| ∼ 
2< O|∂j|π > ∼ fπp 

¯

2 = fπmπ ≈ 0 (7.7) 

< n js π > = gAu(n)γ1γµu(p) (+P.S.) (7.8) µ||
0 = < n js π > (7.9) µ||

= gAMN − fπgπNN (7.10) 
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Figure 7.1: Goldberger-Treiman. 

⇒ Goldberger-Treiman.

This is the tip of an iceberg of applications, as alluded to above.
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7.2 Meson Masses, UA(1) Problem 

Standard (Gellmann – Oakes – Ronne) GM-O-R → (Gellmann – Okulbo) GM-O will 
discuss this using effective Lagrangian with 

< ḡLi, g
j >= νδi

j	 (7.11) R 

there are low-energy states associated with slow motion in the vacuum manifold 

j< ḡLi(x), gR(x) >= νΣi
j(x) (Σ ∈ SU(3)) (7.12) 

Write 

ZiM 
Σ = exp( )	 (7.13) 
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tr∂µΣ+∂µΣ (7.15) 

gives the properly normalized axial current. 
Note 

SU(3)L+R 

SU(3)L × SU(3)R 

flavor symmetryΣ → U+ΣU 
Σ → U+ΣU 

(7.16) 

No potential is allowed, since ΣΣ+ = 1, detΣ = 1. 
Quark masses likewise transform as U+MV (since they go with ḡLig

j 
R). 

So 
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⎞⎛ 

mu 
⎜
⎝ md

⎟
⎠ (7.19) × 

ms 

4υ2 
2 mπ◦π◦ = 

f 2 
(mu + md) (7.20) 

4υ2 mu + md 4ms2 m = 
f 2 

( + ) (7.21) ηη 3 3 

4υ2 mu − md2 mπ◦η = 
f 2 

√
3 

(7.22) 

4υ2 
2 mK+K− = 

f 2 
(mu + ms) (7.23) 

4υ2 
2 mK◦K̄◦ = 

f 2 
(md + ms) (7.24) 

Phenomenologically: 

mu,md � ms (7.25) 

mu − md is not much smaller than mu + md. It is still rather poorly determined. 
Gets mixed up with QED corrections. 

Probably 

mu 

md 

≈ 0.4 (7.26) 

mu + md 1 
(7.27) 

ms 

≈ 
25 

n mixing is ∼ mu+md .π −
ms 

From all this we get 

2 2 2 23mη + mπ◦ = 2(mK+ + mK◦ ) (7.28) 

which works very well. 
However, if we include a singlet 
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doscalar mesons Has not been seen (n
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gets no contribution from ms ⇒ extra light pseu-

won’t do). This is the UA(1) problem. 


