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8.334: Statistical Mechanics II Problem Set # 6 Due: 5/7/14
 

Beyond Spin Waves 

1. Nonlinear σ model with long–range interactions: Consider unit n-component spins, 
L

ss(x) = (s1, s2, · · · , sn) with |ss(x)|
2 = si(x)

2 = 1, interacting via a Hamiltoniani 

dd ddβH = x y K(|x − y|)ss(x) · ss(y) . 

(a) The long-range interaction, K(x), is the Fourier transform of Kqω/2 with ω < 2. 

What kind of asymptotic decay of interactions at long distances is consistent with such 

decay? (Dimensional analysis is sufficient for the answer, and no explicit integrations are 

required.) 

(b) Close to zero temperature we can set ss (x) = (sπ (x), σ(x)) , where sπ (x) is an n − 1 com

ponent vector representing small fluctuations around the ground state. Find the effective 

Hamiltonian for sπ (x) after integrating out {σ(x)}. 

(c) Fourier transform the quadratic part of the above Hamiltonian focusing only on terms 

proportional to K, and hence calculate the expectation value (πi(q)πj(q ′ )) .
0

We shall now construct a renormalization group by removing Fourier modes, sπ >(q), 

with q in the shell Λ/b < |q| < Λ. 

(d) Calculate the coarse grained expectation value for (σ)> to order of π2 after removing
0 

′ these modes. Identify the scaling factor, ss ′ (x ′ ) = ss<(x)/ζ, that restores ss to unit length. 

(e) A simplifying feature of long–range interactions is that the coarse grained coupling 

˜constant is not modified by the perturbation, i.e. K = K to all orders in a perturbative 

calculation. Use this information, along simple with dimensional analysis, to express the 

renormalized interaction, K ′ (b), in terms of K, b, and ζ. 

(f) Obtain the differential RG equation for T = 1/K by considering b = 1 + δℓ. 

(g) For d = ω + ǫ, compute Tc and the critical exponent ν to lowest order in ǫ. 

J

(h) Add a small symmetry breaking term, −sh · ddx ss(x), to the Hamiltonian. Find the 

renormalization of h and identify the corresponding exponent yh. 

******** 
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2. The XY model in 2 + ǫ dimensions: The recursion relations of the XY model in two 

dimensions can be generalized to d = 2 + ǫ dimensions, and take the form: 

 

 

2 
 

dT 
= −ǫT + 4π3 y

dℓ . 
 dy π 
 = 2− y

dℓ T 

(a) Calculate the position of the fixed point for the finite temperature phase transition. 

(b) Obtain the eigenvalues at this fixed point to lowest contributing order in ǫ. 

(c) Estimate the exponents ν and α for the superfluid transition in d = 3 from these results. 

[Be careful in keeping track of only the lowest nontrivial power of ǫ in your expressions.] 

******** 

3. (Optional problem) Symmetry breaking fields: Let us investigate adding a term 

−βHp = hp d2 x cos (pθ(x)), 

to the XY model. There are a number of possible causes for such a symmetry breaking 

field: p = 1 is the usual ‘magnetic field,’ p = 2, 3, 4, and 6 could be due to couplings to an 

underlying lattice of rectangular, hexagonal, square, or triangular symmetry respectively. 

As hp → ∞, the spin becomes discrete, taking one of p possible values, and the model 

becomes equivalent to clock models. 

(a) Assume that we are in the low temperature phase so that vortices are absent, i.e. the 

vortex fugacity y is zero (in the RG sense). In this case, we can ignore the angular nature 

of θ and replace it with a scalar field φ, leading to the partition function 

Z = Dφ(x) exp − d2 x 
K 

(∇φ)2 + hp cos(pφ) . 
2 

This is known as the sine–Gordon model, and is equivalent to the roughening transition.
 

Obtain the recursion relations for hp and K.
 

(b) Show that once vortices are included, the recursion relations are
 

 

2dhp p
 

 = 2− hp, 
 

 dℓ 4πK 
 

 

 

dK−1 πp2h2 
p 2 = − K−2 + 4π3 y , 

 

 dℓ 2 
 

 

 

 dy 
 = (2− πK) y. 

dℓ 
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(c) Show that the above RG equations are only valid for 8π < K−1 < π , and thus only 
p2 2 

apply for p > 4. Sketch possible phase diagrams for p > 4 and p < 4. In fact p = 4 is 

rather special as there is a marginal operator h4, and the transition to the 4-fold phase 

(cubic anisotropy) has continuously varying critical exponents! 

******** 

4. Inverse-square interactions: Consider a scalar field s(x) in one-dimension, subject to 

an energy 

−βHs = 
K 

2 
dxdy 

s(x)s(y) 

|x − y|2 
+ dxΦ[s(x)]. 

The local energy Φ[s] strongly favors s(x) = ±1 (e.g. Φ[s] = g(s2 − 1)2, with g ≫ 1). 

(a) With K > 0, the ground state is ferromagnetic. Estimate the energy cost of a single 

domain wall in a chain of length L. You may assume that the transition from s = +1 to 

s = −1 occurs over a short distance cutoff a. 

(b) From the probability of the formation of a single kink, obtain a lower bound for the 

critical coupling Kc, separating ordered and disordered phases. 

(c) Show that the energy of a dilute set of domain walls located at positions {xi} is given 

by 
|xi − xj |

−βHQ = 4K qiqj ln + ln y0 |qi|, 
a 

i<j i 

where qi = ±1 depending on whether s(x) increases or decreases at the domain wall. 

(Hints: Perform integrations by part, and coarse-grain to size a. The function Φ[s] only 

contributes to the core energy of the domain wall, which results in the fugacity y0.) 

(d) The logarithmic interaction between two opposite domain walls at a large distance L, 

is reduced due to screening by other domain walls in between. This interaction can be 

calculated perturbatively in y0, and to lowest order is described by an effective coupling 

(see later) 

∞ 4Ka 
4K → Keff = K − 2Ky2 drr + O(y ). (1) 

0 0 ra 

By changing the cutoff from a to ba = (1 + δℓ)a, construct differential recursion relations 

for the parameters K and y0. 
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K−1(e) Sketch the renormalization group flows as a function of T = and y0, and discuss 

the phases of the model. 

(f) Derive the effective interaction given above as Eq.(1). (Hint: This is somewhat easier 

than the corresponding calculation for the two-dimensional Coulomb gas, as the charges 

along the chain must alternate.) 

******** 

5. Melting: The elastic energy cost of a deformation ui(x), of an isotropic lattice is 

1 
dd−βH = x [2µuijuij + λuiiujj ] ,

2 

where uij(x) = (∂iuj + ∂jui) /2, is the strain tensor. 

(a) Express the energy in terms of the Fourier transforms ui(q), and find the normal modes 

of vibrations. 

(b) Calculate the expectation value (ui(q)uj(q ′ )). 

(c) Assuming a short-distance cutoff of the order of the lattice spacing a, calculate U2(x) ≡ 
( )

2
(su(x)− su(0)) . 

(d) The (heuristic) Lindemann criterion states that the lattice melts when deformations 

grow to a fraction of the lattice spacing, i.e. for lim|x|→∞ U(x) = cLa. Assuming that µ = 

ˆˆ and λ λ/(kBT ), use the above criterion to calculate the melting temperature µ/(kBT ) = 

Tm. Comment on the behavior of Tm as a function of dimension d. 

******** 
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