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Problem 1. Long-range interaction between an excited atom and a ground-state 
atom 

Consider the case where one atom is excited and the other atom is in its ground state. For 
simplicity model each atom as a two level system with one ground state and one excited state. 

a) Assume you have two atoms a and b with almost (but not quite) degenerate ground ↔ excited 
(a) (a) (b) (b)

state transition energies (E − Eg ) ≈ (E − Eg ). How does the energy of the state |iagb)i i 
change as a function of the separation R for large distances? What about state |gaib)? For 
what separation does perturbation theory become invalid? 

b) Now assume you have two identical (i.e. same transition energy) atoms. Calculate the long-
range interaction potential curves for the case of one excited atom and one ground state 
atom. 

c) For case (b) what is the relation between the spontaneous decay rate of the atom and its 
long-range interaction coefficient? 

Problem 2. Casimir model of the electron 

Model the electron as two parallel plates of area a2, separated by distance a and carrying charge 
e q = 2 . Balance the Casimir and electrostatic forces and from this determine a value for the 

2 efine-structure constant α ≡ (cgs units). �c 

Problem3. Physical origin of T2 

Next week, we will discuss a general derivation of optical Bloch equations which include damping 
of elements of the atomic density matrix. In this problem, in preparation for the general discussion, 
you will look at different processes which lead to such damping. 

What is the physical meaning of the decay of the off-diagonal elements of the atomic density 
matrix, ρeg and ρge, due to spontaneous emission and other processes? Three very simple models 
for this kind of quantum noise, which leads to loss of phase coherence, and gives rise to decoherence 
times characterized by T2, are the following. 
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a) One physical origin for the decay of the off-diagonal elements of the atomic density matrix 
(this decay is known as “phase damping”) is random phase noise. Suppose that we have an 
atom in the arbitrary state � � 

ρ = 
a 
c 

b 
d , (1) 

excited by far off-resonance light of random intensity. The effect of this light on the state 
is an AC stark shift |e) → eiθ|e), which we may model as a rotation Rz (θ), where the angle 
of rotation θ is random, distributed as a Gaussian with mean 0 and variance 2λt. Give 
ρ(θ) = (θ)ρR† (θ), and the expected density matrix ρ̄(t) =  ρ(θ)), averaged over thisRz z 
Gaussian distribution. 

b) Another physical origin for phase damping is elastic collisions. Assume the two-level atom 
bounces along a waveguide, interacting with the walls without loosing kinetic energy, but 
changing its trajectory slightly at each bounce, in a manner depending on the state of the 
atom. This can be modeled by a Hamiltonian interacting the atom with a single mode 
environment,   

HSE = |e) e| ⊗ γ|0) 1| + γ ∗ |1) 0| , (2) 

with coupling constant γ. This Hamiltonian flips the state of the environment between |0)
and |1) with a rate gamma, when the atom is in the excited state. This is a simple model 
for a state-dependent interaction with the environment. Compute the evolution of an initial 
atomic state a|g)+b|e) coupled to an environment |0), evolved for a small differential timestep 
dt, and give the density matrix of the atom ρ(t) for small t. 

c) A third physical model for phase damping is the following scenario (which you may think a bit 
unphysical). Suppose the two-level atom is subject to a force which randomly flips the phase 
of the atom by −1, changing |e) → −|e), with probability (1 − e−λt)/2 at each moment in 
time. Assuming the density matrix is initially arbitrary, give ρ(t) averaged over this random 
phase flip process. 

An amazing fact about these three models is that if phase damping is known to be happening to 
an atom, say during traversal through some black box, without additional knowledge about what is 
inside the black box, there is in principle, no way to distinguish between which of the above physical 
processes is causing the phase damping! They are perfectly equivalent and equally legitimate. This 
is fundamental to why quantum error correction can work: phase noise can be modeled as either no 
error happens to the state, or a phase flip “error” occurs (analogous to bit errors in a communication 
channel), even if the actual physical process is a different one. 
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