- 1. Prove that the product of the volume of the first Brillouin zone and the volume of the unit cell of the Bravais lattice equals $(2\pi)^3$.
- 2. Show that rotations about any axis that takes a Bravais lattice into itself must be either 1, 2, 3, 4 or 6 fold.
- 3. The common building blocks for most high temperature (high T_c) superconductors are copper oxide layers, as depicted in Figure I.1.6. Assume the distance between copper atoms (filled circles) is *a*. For simplicity let us also assume that in the third dimension these CuO₂ layers are simply stacked with spacing *c*, and there are no other atoms in the crystal. In first approximation the layers have a four-fold symmetry; the crystal is tetragonal.

۲	0	•	0	•	0	٠	Fig. I.1.6. CuO ₂ lattice
0		0		0		0	
ė	0	٠	0	٠	0	•	4
0		0		0		• 0	а
۲	0	•	0	•	0	•	ŧ
0		0		0		0	
۲	0	•	0	۲	0	•	

- (a) Sketch the Bravais lattice and indicate a possible set of primitive vectors for this crystal. What is the unit cell, and what is the basis?
- (b) In LaCuO₄ one discovers, at closer inspection, that the CuO₂ lattice is actually not flat, but that the oxygen atoms are moved a small amount out of the plane ("up" or "down") in an alternating fashion (in Figure I.1.7, a + means up and a means down).[1] What is the primitive cell and lattice spacing for this crystal? What is the reciprocal lattice? Describe (qualitatively) what happens in the X-ray diffraction pattern as the distortion is decreased gradually to zero.

 LaCuO₄ is an antiferromagnetic insulator. High temperature superconductivity was discovered in a closely related compound, La_{1-x}Ba_xCuO₄. See J.G. Bednorz and K.A. Müller, Z. Physik B 64, 189 (1986).