Due November 2, 2004

1. Marder, Chapter 17, Problem 6

To do this problem, you may start with the following equation relating the heat current density j_Q and the charge current density j.

$$j_Q = \Pi j - \kappa \frac{\partial T}{\partial x} \tag{1}$$

where Π is the Peltier coefficient and κ the thermal conductivity. We assume $\Pi_p > 0$ and $\Pi_n < 0$.

- 2. (a) Write down an expression for the ground state energy E_N of an N interacting electron system in the Hartree-Fock approximation. Note that it is not equal to the sum of one electron eigenvalues.
 - (b) Suppose the electron occupying the *i*th eigenvalue ε_i is removed, leaving an N-1 electron system with energy $E_{N-1}(i)$. The energy difference $E_N E_{N-1}(i)$ is called the ionization energy E_i . Assuming the rest of the eigenvectors are unchanged, show the ionization energy equals ε_i . This is called Koopman's Theorem.