Consider the two-site Hubbard model

$$
H=t \sum_{\sigma}\left(c_{1 \sigma}^{\dagger} c_{2 \sigma}+h . c .\right)+U \sum_{i=1,2} n_{i \uparrow} n_{i \downarrow}
$$

where $c_{i \sigma}^{\dagger}$ creates an electron with spin σ on site i and $n_{i \sigma}=c_{i \sigma}^{\dagger} c_{i \sigma}$ is the number operator of electrons with spin σ on site i.

1. Write down the basis set (using creation operators) which spans the Hilbert space with 1 , 2,3 , and 4 electrons. In this basis write down the Hamiltonian matrix. What are the eigenvalues and eigenvectors in the case of 1,3 , and 4 electrons?
2. Consider the case of two electrons. Calculate the eigenvalues and degeneracies exactly. In the Case $U \gg t$, show that the lowest two eigenvalues and degeneracies match those of the spin $\frac{1}{2}$ Heisenberg model $J \mathbf{S}_{1} \cdot \mathbf{S}_{2}$, where $\mathbf{S}=\frac{1}{2} \boldsymbol{\sigma}$ and $\boldsymbol{\sigma}$ are the Pauli matrices. What is the value of J ?
