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8.512 Theory of Solids 

Problem Set 3 

Due March 4, 2004 

1. This problem reviews the Boltzmann equation and compares the result with the Kubo 

formula. For a derivation of the Boltzmann equation, read p.319 of Ashcroft and 

Mermin. 
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The Boltzmann equation in the relaxation time approximation is 
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where f0 is the equilibrium distribution 
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where e ̂ is the unit vector in the direction of E0.

(b) A simple way to derive the Kubo formula is to compare the energy dissipation 

rate σE2 
0 with the rate of photon absorption. At finite temperature, we need 

to include both absorption and emission processes. Show that for free electrons 

(including spin) � 2e2 1 � i
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Using the KramersKronig relation, show that the complex conductivity is 
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(c) For	 |q| � kF , show that Eq.(7) reduces to Eq.(5) under the assumptions that 

|α >, β > are plane waves and η is identified with 
τ 
1 .|

q and ˆ2. Equation (5) in Problem 1 is valid for any relation between 
→

e. In an isotropic 

material the response can be separated into the longitudinal (
→
q � ê) and transverse 

parts (
→
q⊥ ê). The latter is appropriate for the propagation of electromagnetic waves. 

(a) For T � �F , show that the transverse conductivity can be written as an integra

tion over the Fermi surface. � 1σ0 3 
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In Eq.(8) σ0 = ue2τ/m is the DC Boltzmann conductivity and the integration 

variable x stands for cos θ in an integration over the Fermi surface. 

(b) The integral in Eq.(8) can be done analytically.	 For our purposes, find the small 

s and large |s| limits. The small s limit is the Drude conductivity while the | | | | 

large |s| limit is called the “extreme anomalous region.” It describes the situation 

when the electron mean free path � is much greater than the wavelength of light. 

Note that it is reduced from σ0 by the factor 1/(q�). Produce a simple argument to 

show that this reduction factor can be understood on the basis of kinetic theory of 

classical particles. (Hint: Consider a low frequency transverse electromagnetic 

wave. For q� � 1, all the electrons can absorb energy from the electric field. 

However, for q� � 1, only a fraction travelling almost parallel to ê can do so. 

The argument was first given by Pippard.) 


