
Physics 8.821: Problem Set 2 Solutions

1. Hawking temperature from analytic continuation

We are studying a set of black hole metrics of the form

ds2
1

= −f(r)dt2 + dr2 + ... (1)
h(r)

where f(r) and h(r) have zeroes at the horizon r = r0 and everything else is regular
there. Now consider switching to a coordinate system with a reparametrized radial
coordinate ρ which is the proper distance from the horizon, i.e.

1
dρ = √ dr ρ(r = r0) = 0 (2)

h(r)

Integrating this in a small neighbourhood of r = r0 we find the relation between ρ and
r close to the horizon

2
ρ = √

h′(r0)

√
r − r0 . (3)

Now we note that as f(r) has a zero at r = r0 we can write it in terms of the ρ
coordinate as

1
f(r → r0) ∼ f ′(r0)(r − r0) = ρ2h′(r0)f

′(r0). (4)
4

Now consider analytically continuing to Euclidean time τ via t = −iτ . Putting all of
these ingredients together, the metric close to the horizon becomes

ds2 = ρ2

(√
h′(r0)f ′(r0)

2

dτ

)
+ dρ2 + ... (5)

2

Now staring at this metric we realize that it is actually very familiar; this is the metric
of flat 2D Euclidean space in polar coordinates ds2 = dρ2+ρ2dθ2, with the radial coordi-
nate being ρ and the role of the angle θ being played by the coordinate

√
h′(r0)f ′(r0)τ/2.

However, we know from our familiarity with flat space that θ must be a periodic coordi-
nate with the identification θ ∼ θ+ 2π, as otherwise the space has a conical singularity
at the origin. This means that τ must be similarly periodic,

4π
τ ∼ τ + √ . (6)

h′(r0)f ′(r0)

But we know how to interpret a periodicity in Euclidean time; it means that we are
studying an ensemble at a finite temperature TH , where the period is the inverse tem-
perature, i.e.

TH =

√
h′(r0)f ′(r0)

, (7)
4π

as claimed in the problem set.
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2. Kerr-Newman metric

(a) The horizon is essentially defined to be the outermost zero of ∆(r); setting ∆(r) =
0 we find the two solutions

r = M± ±
√
M2 − a2 −Q2 (8)

of which the outer root r+ is the location of the horizon. To find the area of the
horizon we write down the induced metric on a sphere of constant r,

ds2
Σ

= γabdx
adxb = sin2 dφ2 + ρ2dθ2 (9)

ρ2

The area is A =
∫
dθdφ

√
γ which trivially evaluates to

A = 4π(r2+ + a2+), (10)

where we have used the fact that ∆(r+) = 0.

From the formula for TH in (7) and the explicit form of the metric we find

1
TH =

4π

∆′(r+)√
Σ

=
2(r+ −M)

(11)
A

Finally, we turn to the angular velocity Ω, which may be slightly unfamiliar.
In Section 6.6 of [1] the meaning of the angular velocity of the event horizon is
discussed. It can be defined as the minimum angular velocity of a particle at the
horizon. The limiting trajectory of a massive particle is equal to that of a photon;
setting ds2 = 0 on such a trajectory and attempting to find the minimum angular
velocity we set motion in all other directions to 0 to find at the horizon

dφ
= ω(r+) (12)

dt

thus we have
a(r2

Ω = ω(r+) = + + a2)

Σ
=

4πa
. (13)

A

(b) To saturate the inequality and arrive at an extremal black hole we set M = a2+Q2.
Note that at the extremal point the two roots of ∆(r) in (8) are merging; precisely
at extremality we obtain a double zero of ∆(r) at the value r0 = r+ = r = M . It−
is clear from here that the temperature (11) is going to 0 at the extremal point.

However the entropy S of the black hole is

A
S = = π(M2 + a2) (14)

4

at extremality; essentially the surface area of the horizon and thus the entropy is
nonzero even if the temperature is zero.1

1But by holography presumably most black holes are dual to field theory states in some sense; how can a
field theory state have a finite entropy even if it has a vanishing temperature? Discuss.
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(c) The extremal case with zero angular momentum a = 0 (and thus M = Q) is rather
simple:

ds2
(r

=
−Q)2−
r2

dt2 +
r2

dr2 + r2 dθ2 + sin2 θdφ2 (15)
(r −Q)2

To compute the distance to the horizon (located at r =

(
Q) we calculate

)
the integral∫ Q

dr
√
grr =

∫ Q r
dr, (16)

r −Q

which is clearly logarithmically divergent as we approach the horizon. Thus at
extremality the horizon is infinitely far away; what has appeared to fill this space?
To answer this cleanly let us zoom in to the near-horizon limit by considering the
following scaling limit

τ
(r −Q) = λζ t = (17)

λ
in which we take λ→ 0 while holding the new coordinates ζ, τ fixed. Note that this
has the effect of focusing our attention near the horizon at r = Q. It is interesting
to note that in some sense we are also focusing our attention to variation on time
scales that are very long in terms of the original t coordinate; thus the near-horizon
limit is in some sense also a small-energy limit, a fact whose importance cannot
be overstated.

In any case, we find for the metric

ds2
ζ2

= −
Q2
dτ 2 +

Q2

dζ2 +Q2 dθ2 + sin2 θdφ2 (18)
ζ2

up to finite λ corrections. This is the metric of

(
AdS

)
2 × S2, where the AdS2 has

AdS radius Q (which happens to coincide with the radius of the S2.)

3. (a) The first law of black hole mechanics (which we are trying to verify) in this case
reads as

dM = TdS + ΦdQ+ ΩdJ (19)

where the electric potential Φ = 4πQr+ and all other quantities are defined above.
A

Verifying this is a straightforward exercise in writing out differentials. I found it
most convenient to write everything in terms of da, dM and dQ, in which case we
find

4π(r+ )
dS

−M
=

A

(
r+dM + ada+

r+
(MdM ada

r+ −M
− −QdQ) (20)

dJ = adM +Mda

)
(21)

Assembling things together in the combination on the right-hand side of (19) it is
now easy to see that everything cancels out except for a term in dM :

4π
TdS + ΦdQ+ ΩdJ = r

A

(
2
+ + a2

)
dM = dM, (22)
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just as expected. The rather nontrivial structure of the cancellations should give
you some respect for the rich structure that is hidden inside solutions such as the
Kerr metric.

(b) Consider first the black hole with mass M and angular momentum J . Then by
the usual formula we have for the initial(entropy of the black hole

S = π(r2+ + a2) = 2π M2 +M
√
M2 − a2

)
(23)

where a ≡ J as above. Now imagine some classical process happens to cause the
M

black hole to lose all of its angular momentum; at the end it has a different mass
Mf and a final entropy Sf which is just

Sf = 4πM2
f (24)

However by the Second Law we know that in any classical process Sf ≥ Si,
meaning that we have (

Mf

M

)2

≥ 1

2

(
1 +

√
1− a2

(25)
M2

)
This is a fundamental inequality on the ratio of initial and final masses; we see
that the final mass cannot drop arbitrarily low. The largest fractional change
occurs when the black hole was initially extremal, i.e. a = M , in which case we
find (

Mf

M

)2

≥ 1
, (26)

2

corresponding to a fractional change of 1− 1√ = 29%.
2

(c) Let us consider the various inequalities; the black hole has charge Q and mass M ,
and the particle we are dropping into it has charge q and mass m. We require that

q
1 <

m
<
M

(27)
Q

Clearly this is a tighter and tighter window as we get closer and closer to extremal-
ity of the black hole, i.e. taking Q to M . Let us now see if we can ever push the
black hole into extremality by dropping in a particle. I will in fact assume that
we pick the most dangerous (i.e. highest q ratio) particle that we can subject to

m

the constraint (27). This particle has charge

M
q = m (28)

Q

After we drop it in, the black hole has charge Q′ = Q+ q and M ′ = M +m, and
we find in this most dangerous case

Q′ Q
=

M ′ M

1 + M2

Q2
m
M

1 + m (29)
M
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we reached extremality? To get some insight into this let us assume we were
to extremality to begin with and expand Q near 1,

M

Q′ Q
= 1

M ′ −
(

1−
M

)
1− m

M

1 + m + . . . (30)
M

ny sensible particle should have m < 1 the second term has a definite sign,
M

we see that provided Q ′
< 1 then we also have Q

M
< 1; thus we cannot reach

M ′

mality in any single step (and thus in any finite number of steps, since this
f makes no assumption about how close Q was to 1 when we started).

M

ever staring at (29) (or Figure 1) we may be uneasy; after all, I expanded it
Q
M
∼ 1, but the condition Q′

= 1 has multiple solutions; in fact, it looks like
M ′

� 1 we could reach extremality in one step. Indeed, if we drop in a particle
whose mass is m = Q, it appears we could bound to extremality in one giant leap
while still remaining within the bound (27). Does this make sense?

It should seem physically clear that it does not, but let us carefully understand
why. In our construction such a particle mass with m = Q will have charge q = M
from (28). Thus it has a charge that is (in Planck units) equal to the mass of a
black hole. This is not an elementary particle; it should be considered a gravitating

object in its own right, and is actually a naked singularity in general relativity.
Of course we can add a naked singularity to an near-extremal black hole to get an
extremal black hole; but that is not the physics question that we are answering.
The asymmetry betwee n elementary particles and black holes is evident from the
very fact thatwe are studying objects with q > m, which means that they cannot
be large enough to be gravitating (a criteria which boils down to m, q � 1 in the
Planck units we have.)
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4. A gas of radiation and maximal entropy bound

This problem involves raising( many things to many awkward powers. To avoid repeat-

edly writing things like 4π
3

) 7
4 that do not help understanding I am going to completely

neglect all order 1 constants throughout (i.e. 2π = 1). I will also set ~ = kB = c = 1.
I will not set GN to 1, although in these units I do have G 2 2

N = lP = m−P

(a) From scale invariance we have for the energy density of the system

ρ = ZαT 4 (31)

where α is an O(1) dimensionless constant that will be set to 1 from now on. Thus
the total energy is

E ∼ ZR3T 4 . (32)

From elementary thermodynamics we have for the total entropy

4
S =

3

E
. (33)

T

Now eliminating T using (32) we have

Sgas ∼
1

Z 4 (ER)
3
4 . (34)

(b) The system is about to form a black hole if the radius of the box is equal to the
Schwarzschild radius of the energy that the box contains, i.e.

R = Rs(E) ∼ GNE ∼ l2PE (35)

The entropy of such a black hole is

R2

Sbh ∼ (
GN

∼ ElP )2 (36)

Let us now rewrite the entropy of the gas using (35) to write E in terms of R at
threshold:

Sgas ∼
1

Z 4

(
R

lP

) 3
2

(37)

Thus for the ratio we find
Sgas
Sbh
∼ Z

1
4

√
lP

(38)
R

Indeed, the ratio of the two entropies is very small at reasonable box sizes R� lP .
Thus it seems rather difficult to violate the entropy bound in this way.

6



(c) In this case the box will form a black hole once the energy stored in the box is
equal to the energy of a Schwarzschild black hole of the same radius, i.e.

1
GNR

3
Mρ ∼ RM → R2

M ∼ . (39)
l2Pρ

In this case we rewrite everything in terms of the energy density of the box, to
find

Sgas 1

Z
Sbh
∼ 4

(
ρl4P
) 1

4 (40)

Thus indeed provided that the energy density ρ � l−4P ∼ m4
P we find that the

ratio is again miniscule.

(d) We can violate the bound by taking

Z ∼
(
R

2

lP

)
(41)

in the first case (38) or

Z ∼
(
m4
P (42)
ρ

)
in the second case (40). This number of species is of course utterly ridiculous.
As an example, let us see how many photon species we would need to violate the
bound using photons at room temperature T = 300K. This corresponds to an
energy density of (10−3eV)4; plugging this into (42) we need around Z ∼ 1096

species to saturate the bound.

5. Wilson loop in the large N limit

(a) In this problem we seek to establish a relation between WF (C) and WA(C), the
Wilson loops in the fundamental and adjoint respectively. I would like to provide
a somewhat low-brow treatment of this that involves the bare minimum of math.
Note that for both the adjoint and fundamental we have

W (C) = 〈TrU(C)〉, (43)

where U(C) is an element of U(N) that is then averaged over various gauge field
configurations, and the difference between the two lies solely in which representa-
tion the trace is taken in.

Let us then back up for a minute and consider what it means to take a trace.
Imagine we have some matrix M that acts on some vector space V . To take a
trace we construct a basis for the space {v(i)}. We should probably normalize the
{v(i)} in some nice way with an inner product,

〈v(i), v(j)〉 = δij (44)
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We then define the trace to be

Tr(M) ≡
∑
〈v(i),Mv(i)

i

〉 (45)

We now go through this procedure for our case. First consider the fundamental
representation of U(N). Here we have matrices Uab that act on a vector space
that is just CN ; thus the vectors v(i) defined above can be conveniently taken to

(i)
be unit vectors, i.e. in components vb = δib. The notation is clear, hopefully:
(i) labels which unit vector I am talking about, and b is which component. They
both run from 1 to N). In this case we find that the trace is

TrF (U) =
∑

Uaa (46)
a

Now let us repeat the same exercise for the adjoint. Here U(N) acts in a more
interesting way; given an N ×N complex matrix Aab and an element U ∈ U(N),
the action of U on A is given by

(UA)ab ≡ Uea
∗ UfbAef (47)

Thus our vector space V is the set of N ×N matrices. Now we use this definition
to figure out the trace. First, we take our inner product on this space to be the
normal trace on matrices, i.e.

〈A,B〉 ≡ TrA†B =
∑

A∗baAba (48)
ab

This seems reasonable. Now we need a basis; I pick it to be

(ij)
Vab = δiaδ

j
b (49)

where ab labels components and (ij) has a total of N2 labels that tell me which
basis element I am talking about. Now I use the definition (45) to take the trace
of some element U ∈ U(N):

Tr (U) =
∑

V (ij)
A , UV (ij) (50)

∑(ij)
〈 〉

= δibδ
j
aUeb
∗ Ufaδ

i
eδ
j
f =

∑
Uee
∗ Uff (51)

abij ef

Thus we conclude that for any U(N) element U we have

TrA(U) = TrF (U)TrF (U †) (52)

In the large N limit this works for SU(N) as well. If we were at finite N and
were more careful presumably we would need to worry about the fact that SU(N)
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actually acts only on the space of N ×N matrices with fixed determinant, there
are only N2 − 1 of them, we should constrain the basis (49) somehow, etc. etc.

In our context we have then

WA(C) = 〈TrAU〉 = 〈TrFUTrFU
†〉 (53)

where U is some path-ordered exponential of Aµ,

U = P exp

(
ig

∮
dxµAµ(x)

C

)
. (54)

Up till now we have only done mathematics; let us now apply some properties of
large-N gauge theories. We are studying the product of two single-trace operators.
Each of these operators U is nonlocal; however this is not terribly important, as by
expanding the integrals they can be written as a series of integrals over correlation
functions of local operators. The key fact here is that at large-N a product of
single-trace operators factorizes, i.e.

〈TrFUTrFU
†〉 = 〈TrFU〉〈TrFU

†〉 (55)

With (53) we thus find
WA(C) = WF (C)WF (C)†, (56)

with WF (C) = 〈TrFU〉. This is the relation we seek.

(b) In a confining theory a Wilson loop behaves (at large distances) like the exponen-
tial of the area of the loop, i.e.

W (C) ∼ exp(−TA(C)), (57)

where T a quantity with units of mass squared that can be thought of as the
tension of a confining string connecting two infinitely heavy quarks. If we call the
tension of the string between fundamental quarks TF and that between adjoint
quarks TA, then (56) tells us that in such a confining theory,

TA = 2TF (58)

Let us now try to understand this intuitively. In terms of representation theory
we can imagine an adjoint quark as one fundamental q and one anti-fundamental
quark q̄. Consider two adjoint quarks; in calculating the force between them
one can imagine one fundamental string stretching from fundamental to anti-
fundamental, q1 to q̄2 and another fundamental string from anti-fundamental to
fundamental, q̄1 to q2. We do not expect any strings to connect a fundamental
quark with a fundamental quark, as there is no confining force trying to bind them
into a color-singlet meson.2 Thus we have two strings and the net attractive force
(and thus the net string tension) between two adjoint quarks is twice that between
two fundamental quarks, leading to (58).

2Of course if we had N fundamentals confinement would try to bind them into a baryon, and so there is
some force between any two fundamentals; however it seems reasonable to expect this to be suppressed in
the large-N limit, a fact I will not try to prove.
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