
Physics 8.821: Problem Set 3 Solutions

1. Conserved world-sheet currents

We start with the Polyakov action

1
S = ∂

4

∫

d2σ∂aX
µ aXµ , (1)

πα′

where we take the worldsheet coordinates to be (τ, σ). Now if the action is invariant
under some global symmetry corresponding to a change of the string coordinates δXµ,
then the usual Noether procedure gives us an expression for the currents

ǫj µ
a(σ) = ∂aX δXµ, (2)

one for each possible δXµ, and where the normalization of the currents is arbitrary at
the classical level. For the case where the target space is D-dimensional flat spacetime
the possible symmetries are those of the Poincare group. These can be divided into
two classes, translations and Lorentz transformations.

For translations we have δXµ = ǫµ with a constant vector ǫµ, leading to theD conserved
currents

jµ µ
a = ∂aX (3)

It is clear that these correspond to the conservation of four-momentum along the string;
in particular, the conserved charges are precisely the total four-momentum P µ of the
string,

P µ(τ) ≡
∫

dσjτ (σ, τ) =

∫

dσ∂τX
µ, (4)

and by the usual arguments we have d P µ
dτ

= 0. Let us turn now to the homogenous
part of the Poincare group, Lorentz transformations, where we have δXµ = ωµνXν with
an antisymmetric matrix ωµν which is a generator of the Lorentz group. The conserved
currents are

jBa = ∂aX
µωB ν

µνX , (5)

where )
B labels the D(D−1 generators of the Lorentz group. It seems clear that if ω

2 µν

is nonzero only along the spatial directions these are just expressions for the angular
momentum density of the string, and we will not dwell on this further. Slightly less
familiar are the generators of the boosts, i.e. take ωti = −ωit = 1. What do these
mean?

This is most transparent in static gauge, in which X t = τ . In that case we can directly
construct the current corresponding to a boost,

jboostτ = X i − ∂τX
iτ jboostσ = −∂σX

i (6)
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Let us now construct the conserved charge Qboost corresponding to this symmetry,

Qboost =

∫

dσjboostτ =

∫

dσX i − τ

∫

dσ∂τX
i ≡ X i

CM − τP i (7)

where in the last equality we have used the expression (4) for the spatial momentum
of the string and identified the center of mass position of the string coordinate X i

∫

CM
i

≡
dσX . The fact that this quantity Qboost is constant for each of the D − 1 possible

boosts thus means simply that the center of mass of the string moves in a straight line
through spacetime, which makes perfect sense.

2. Virasoso algebra

As this problem is a standard computation treated in all textbooks in string theory
(e.g. see Chapters 9 and 12 of [1]) we will be somewhat brief here. We have the usual
open-string mode expansion

Xµ = xµ + 2α′pµτ + i
√
2α′
∑

n 6=0

αµ
n e−inτ cosnσ, (8)
n

(note the factor of i different from the problem set – I believe this is necessary) and we
work in light-cone gauge X+ = 2α′p+τ .

(a) We can explicitly work out the stress-energy tensor on the world-sheet to be

1
Tab = ∂aX

µ∂bXµ − ηab∂cX
µ∂cXµ . (9)

2

The trace of this symmetric tensor vanishes identically; thus the condition that it
vanish Tab = 0 is only two equations, and we can explicitly work out what they
are to find the conditions

2

Ẋ ±X ′ = 0, (10)

where an overdot · ≡ ∂τ and a p

(

rime ′

)

≡ ∂σ, and the square represents an inner
product with respect to the target-space Lorentz metric. Now using the choice of
light-cone gauge X+ = 2α′p+τ we see that this constraint becomes the remarkably
simple

2
(

Ẋ− ±X ′−

(

˙
) X i X ′i

=
±

)

, (11)
4α′p+

i.e. a linear equation for the X−’s; this is of course the miracle of light-cone gauge
that explicitly allows us to solve the constraints. Now using the mode expansion
(35) we find

Ẋµ ±X ′µ =
√
2α′
∑

αµ
ne

−in(τ±σ). (12)
n
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Plugging this into (11) we find

∑

α−
n e

−in(τ±σ) 1
=

p
2p+

√ i

2

∑

αi −
nα

i
me

(n+m)(τ±σ), (13)
α′

n,m

which permits the immediate solution

α− 1
n =

2p+
√ (
2

∑

αi
n−mα

i
m 14)

α′
m

This is fine, except that we would like to express this in terms of the Virasoro
generators Lm, which are basically the same as the right-hand side of the above
equation (with the p+ extracted of course) except that they are normal ordered:

1
Ln = 5

2

∑

: αi
n−mα

i
m : (1 )

m

Thus to relate (14) to (15) we may need to commute the αi
m’s on the right-hand

side of of (14) past each other, so that all of the αm with m > 0 stand on the
right. Their commutation relations are

[αi
m, α

i
n] = mδm+n,0δ

ij (16)

Thus we see that for any of the Ln’s with n 6= 0 we need not worry, as all of the
αi
n’s appearing on the right-hand side will always commute and we can push them

around with impunity. However for n = 0 we have an issue; we have to commute
half of the αi

m’s in in the infinite sum in (14) past each other. Using (19) we see

that we will actually thus encounter the sum (D−2) ∞

m m=1 . For now we stuff this
2

infinite sum into a factor a, and we then find that

∑

α− 1
n = √ (Ln aδn,0) (17)

2α′p+
−

It was discussed in class that a careful treatment of this sum gives a = D−2 .
24

(b) This is a straightforward but somewhat tedious exercise in keeping track of the
limits of various sums. First let us make the normal ordering of the Ln explicit
by writing

1
Ln =

(

n ∞
∑

αi i
mα

i
n−m +

∑

α i
n−mαm

)

(18)
2

m=−∞ m=n+1

From here it is easy to compute the commutator the Ln with one αj
p to be

[Ln, α
j
p] = −pα

j
n+p (19)
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This is a useful auxiliary result. We are now ready to compute the commutator
of Lm with Ln. We write

1
[Lm, Ln] =

[

n ∞

Lm,
∑

αi
pα

i
n−p +

∑

αi

2 n−pα
i
p

p=−∞ p=n+1

]

(20)

Now using (19) we find the answer to be the two sums

1
[Lm, Ln] = −

2

n
∑

p=−∞

[

(n− p)αi
pα

i
m+n−p + pαi

p+mα
i
n−p

]

− 1
∞
∑

α + pαi

2

[

(n− p) i i
n−p+mα

i
p n−pαm+p

p=n+1

]

(21)

Note the structure of these two sums; the second line is identical to the first except
that the limit on the sum is different and the ordering of the α’s is reversed.

Let us now handle two possible cases separately. First, consider the case m 6= −n.
In that case staring at the α products we see that they always commute, and the
two lines are thus identical except for the limit on the sums. We may then combine
the two sums into one and shift p → p −m on the second part of each sum; the
piece proportional to p cancels and we then find the full expression

1
[Lm, Ln] =

∞

(m n)αiαi = (m n)Lm+n (m = n) (22)
2

p=

∑

− p m+n−p

−∞

− 6 −

Now, on to the trickier case when m = −n. The expression then takes the form

1
[L−n, Ln] = −

2

n
∑

p=−∞

[

(n− p)αi
pα

i
−p + pαi

p−nα
i
n−p

]

− 1
∞
∑

[

(n− p)αi αi
−pα

i
p + pαi

n−p p−n

]

(23)
2

p=n+1

To write this whole expression in terms of L0 we essentially need to normal-order
the expression; this will involve extracting out a c-number contribution from the
commutators of the oscillators. To understand how to do this, imagine that n > 0.
Then every term is already normal-ordered except for a part of the first term, which
must be broken into two parts:

n 0 n
∑

(n− p)αiαi =
∑

(n− p)αi i
p −p pα−p +

p=−∞ p=−∞

∑

(n )
=1

− p
(

αi i
−pαp + p(D

p

− 2)
)

(24)

The last term is the c-number contribution from normal-ordering the α′s; evalu-
ating it we find

n
∑ n3 n

(n
p=1

− p)p =
−
6

(25)
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The remainder of the calculation proceeds as above. By shifting the range of the
sum p → p − n in two of the sums and combining terms the expression can be
written as

1
[L−n, Ln] = −

2

[

0
∑

p=−∞

2nαi
pα

i
−p +

∞
∑

p=1

2nαi
−pα

i
p

]

− D − 2
(n3 )

2
− n (26)

1

From (18) we see that the operator part of this expression is just −2nL0; thus
this expression fits into the same form as (22), except with an extra c-number
contribution. Combining this answer with the other case (22) we can thus write
the whole answer as

D 2
[Lm, Ln] = (m− n)Lm+n +

−
(m3 m

2
− )δm+n,0, (27)

1

which is indeed the desired result.

(c) Before working out the full expression, we use the fact that αi
0 =

√
2α′pi to work

out the transformation of the zero mode of the string under the Virasoro algebra,

[Ln, x
i] = iαj

n

√
− 2α′ (28)

Now using this together with (19) and the mode expansion (35) it is easy to
calculate

[Ln, X
i] =

√
2α′

(

−iαi
n − i

∑

αi imτ
m+ne

− cos(mσ)
m=6 0

)

, (29)

where the first term comes from the zero mode. We may rewrite this as one sum

[Ln, X
i] = −i

√
2α′

(

∑

m

αi
m+n

1 m

2

(

e−imσ+

+ e−i σ−
)

)

(30)

Now we should work out the transformation of X i(σ±) under the diffeomorphisms
generated by

±

ξ± i
n ≡ −ie nσ . Under one such diffeomorphism we have

δnX
i = ǫ ξ+n ∂+X

i + ξ−n ∂−X
i (31)

which works out to be

( )

δnX
i = −iǫ

√
2α′

(

α0
1

2

(

einσ
+

+ e−inσ−
)

+
∑

m6=0

αi
m

1 −

e−i(m−n)σ + e−i(m−n)σ+

2

( )

)

(32)
Again the first term comes from the transformation of the zero mode, and again
this may be written as a single sum; after doing this and shifting m → m+ n we
see that the expression we get is identical to (30). We conclude that

ǫ[L ,X i i
n ] = δnX , (33)

i.e. the Virasoro algebra generated diffeomorphisms on the worldsheet.
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(d) There are various ways to understand this. One way is to note that in light-
cone gauge we have truly reduced our state space to a set of (D − 2) transverse
oscillators; the equation of motion for each of these transverse modes is

Ẍ i −X ′′i = 0, (34)

This is precisely the equations of motion for a CFT in two dimensions, the CFT of
D−2 massless bosons. The Virasoro algebra that we have constructed is actually
the mode expansion for the stress tensor Tab of this CFT. This CFT should have
central chargeD−2, and indeed we have checked that it does in in (27). The modes
of the stress tensor should generate conformal transformations on the operators of
the theory, and indeed that is precisely what the Virasoro operators do, as shown
explicitly in (33) above.

Note that we actually do not obtain the full possible conformal transformations
of a 2d field theory, as we must transform σ+ and σ− in the same way; this is
because we are studying the open string, and the boundary conditions at the open
string endpoints break the full conformal group (i.e. left and right-moving) down
to a diagonal subgroup that preserves these boundary conditions.

3. Scalar modes as transverse fluctuations of D-branes

As this is not a problem we do not actually present a solution here.

4. Separation of D-branes as Higgs mechanism

This problem is worked out in detail in Section 14.3 of [1]. In our treatment we will let
i run over all of the transverse directions that are not X25.

(a) It is clear that the mode expansions for all directions tangent to the brane (i.e.
the X i) are not affected by its presence, i.e. for those we have the usual

X i = xi + 2α′piτ + i
√
2α′
∑

n 6=0

αi
n e−inτ cosnσ, (35)
n

The direction X25 should be different; if we work in a gauge where the worldsheet
is a string with length π, then it is clear from inspection that the mode expansion
must be

X25 σ
= a

π
+
√
2α′
∑

n 6=0

α25
n e−inτ sin nσ (36)
n

To see that this is correct, note that the string should have no net momentum in
the X25 direction, thus there is no p25τ term; however X25(σ = 0) and X25(σ = π)
must differ by a for all time, thus there is a linear term in σ and the spatial mode
expansion now has sin nσ rather than cosnσ.

It is convenient for what follows to use the notation
√
2α′α25

0 = a
π
; in that case

the derivative expressions (12) calculated previously still hold.
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(b) To quantize the string we use the standard mass-shell condition, discussed in class

2p+p−
1

=
α′

(

α′pipi +
1

∞

α25 5
0 α2 5

0 +
∑

αi i 25 2

2 −nαn + α−nαn 1 (37)
n=1

)

[ ]

−

This expression does not depend on boundary conditions, although we have antic-
ipated what comes next by separating out the X25 direction. Now the momentum
along the X i directions should be interpreted as the mass-square of the particles;
we have then

a
M2 = 2p+p− − pipi =

(

2α′π

)2

+
1
(N (
′

− 1) 38)
α

where we have used the expression for α25
0 argued above and the level N has its

usual definition
∞

N =
∑

αi α25
−nα

i
n + α25

−n n (39)
n=1

Thus depending on the value of a t

(

here may still be

)

a tachyon if N = 0; more
interesting, however, are the states at N = 1. These have 25-dimensional mass-
squared equal to

M2 =
( a 2

(40)
2α′π

and can be found by either exciting either αi

)

−1 in which case we have 25− 2 = 23
massive states that are in a vector representation of the SO(24, 1) Lorentz group
or the α25

−1, which naively appears to be a massive scalar under SO(24, 1).

However, we know that a massive vector in 25 spacetime dimensions must have
24 states; thus it seems that the scalar is really a part of the vector states and
we should think of the spectrum as simply being the 24 states corresponding to a
massive vector living in the 25 dimensions parallel to the two D-branes.

Note that there is also a string stretching between the two branes with the other
orientation; thus the spectrum of massive states above is actually doubled.

(c) First let us finish our counting of string states above. Denoting by [12] and [21]
the strings stretching between the two branes, we conclude that at N = 1 for both
[12] and [21] we have 24 states that are probably a massive vector. Similarly we
have [11] and [22] strings that do not stretch between the branes; for each of these
we have a massless scalar (1 state) and a massless vector (23 states).

Now we turn to the field theoretical problem. The Lagrangian is

S =

∫

d25x Tr

(

1−
4
FαβF

αβ − 1
(Dµφ)(D

µφ)

)

(41)
2

Let us parametrize the U(2) gauge field as follows:

1
Aµ = A0

µ 2
+ Ai

µ

σi
(42)

2
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Thus A0 is the diagonal U(1). Now we want to study the spectrum in the Higgs
phase where the scalar φ has expectation value

φ0 =

(

v 0
0 0

)

a
v = (43)

2πα′

What is the spectrum? The scalar has no potential and is unaffected by the shift
in the vacuum; thus naively we have 4 massless scalar states. To determine the
mass terms for the gauge field, we work out the contribution from the kinetic term
of the scalar. Using the definition of the adjoint covariant derivative

Dµφ = ∂µφ− i[Aµ, φ], (44)

we find the contribution from the background (43) to the gauge field to be

1

2
(Dµφ0)(D

µφ0) =
v2

((A1)2 + (A2)2) (45)
2

Thus two of the gauge fields have received mass v. Indeed, it is clear that (43)
transforms under two of the generators of U(2) and has thus given the correspond-
ing gauge bosons mass. This means that of the four massless scalars two of them
must be Goldstone bosons that are eaten by the gauge fields; so our final count
gives us two massive vectors (with mass a ), two massless vectors, and the two

2πα′

remaining massless scalars, in agreement with the string-theoretical calculation
above.

(d) We now have N Dp-branes, sitting at positions

~ (k)
(

(k) · · · (k)
X = a1 , . , a25−p k = 1, 2, · · · , N (46)

What is the relevant scalar expectation va

)

lue? We now have 25− p scalar fields
φi, each of which is an N ×N matrix; with some thought it is possible to convince
yourself that the answer is

1
φi =



(1)
αi 0

πα′



2

 (2)



 0 αi 0
, (47)

0 · · · 0
( )

0
N

a



i





i.e. a diagonal matrix with the c



oordinates of the transver



se separation of the Dp-
branes along the diagonals. One can check by explicitly constructing commutators
that this construction will give masses

( ~Xa 2

M2
b =

− ~Xb)
a (48)

(2πα′)2

to the off-diagonal gauge bosons Aab, as desired.
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5. Mass of a D-brane

(a) We have discussed in class that a string diagram with an Euler characteristic of
χ, where

χ = 2− 2× holes− boundaries (49)

corresponds to an amplitude of g−χ
s . If we want to sum over vacuum diagrams

of open strings, the leading order contribution is simply the disc, which has zero
holes and one boundary, and thus χdisc = 1. The mass of the D-brane should thus
scale like the relevant vacuum diagram, which gives us

1
M ∼ . (50)

gs

(b) It was discussed in class that Newton’s constant GN ∼ g2s . Suppose we have D

bulk dimensions (where D is either 10 or 26 depending on whether we are doing
superstring theory or bosonic string theory.) Then GN ∼ g2s l

2−D
s . The interaction

energy E between two Dp branes separated by a transverse distance R is then

G
E ∼ NM

2

(
R p

∼ (g )0s 51)
D−3−

One could also arrive at this scaling by considering the stringy amplitude for
graviton exchange between two Dp-branes; at lowest level the diagram has the
topology of a cylinder (see e.g. p274 of [2]) and thus has Euler number 0.

This should be compared to their mass, which is 2M ∼ g−1
s and is thus always

larger.

(c) The gravitation potential due to a single D-brane is proportional to GNM ∼ gs
which can neglected in the regime gs → 0. If we consider N D-branes, then the
gravitational potential scales as

GNNM ∼ gsN (52)

which can no longer be ignored if N is large enough so that

gsN ∼ 1 (53)

We note that in the superstring context the force between parallel D-branes is
actually exactly 0 due to an intricate cancellation between the form-charges that
the D-branes carry and their gravitational attraction; nevertheless they do distort
the geometry around them, and when gsN ≫ 1 they do so in a way that we can
understand, causing all of the delightful effects that we now call AdS/CFT.
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