
Physics 8.821: Problem Set 4 Solutions

1. Inversions and Special Conformal Transformations

(a) Consider AdSd+1 in Poincare coordinates, with the AdS radius R set to 1:

ds2
dz2 + η

=
µνdx

µdxν

z2
≡ dxAdxA

(1)
z2

where xA = (z, xµ) and we have introduced some new notation, xAxA ≡ z2+xµxµ.
Now I claim that the horribly violent inversion

A

xA x̄A x→ = (2)
xBxB

is actually an isometry of AdS, meaning that the metric in the barred coordinates
takes precisely the same form as it did in the unbarred coordinates. This is not
hard to verify, starting with the fact that

dx̄A 1
=

xBxB

(

dxA − 2
xA

xCdx
C (

xBxB

)

3)

It is now easy to show that

x
d 2 d¯Adx̄

=
A

s
z̄2

=
(xDxD)

2 1

z2 (xBxB)2

(

dxA − 2
xA

xBxB

xCdx
C

)(

dxA − 2
xA

xCdx
C

xBxB

(4)

)

Expanding out the bracket we obtain

ds2
dx̄Adx̄A

=
z̄2

=
1

z2

(

dxAdxA − 4
(xAdx

A)2

xBxB

+ 4
xAx

A

(xBxB)2
(xCdx

C)2
)

=
dxAdxA

z2

(5)
as claimed.

(b) Perhaps the best way to show this is to consider the Jacobian of the coordinate
transformation (2). We have the following relation

∂x̄A

∂xB
=

1

xCxC

(

δAB − 2
xAxB

6
x

)

( )
BxB

Now consider the eigenvalues of this Jacobian. It is a d+1 dimensional matrix; to
determine the eigenvalues consider hitting it with vectors yA. There are d vectors
y⊥A for which y⊥Ax

A = 0; for those we find that

∂x̄A 1
yB

∂xB ⊥ =
xCxC

yA⊥, (7)
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i.e. that these eigenvalues of the Jacobian are positive. Now consider hitting it
with the single vector yA‖ that is proportional to xA, i.e. yA‖ = cxA; for that we
have

∂x̄A

∂xB
yB‖ = − 1

yA,
xCx ‖ (8)

C

i.e. there one negative eigenvalue. Thus the determinant of the Jacobian (which
is the product of the eigenvalues) is negative.

Now to connect this inversion continuously to the identity (which obviously has
positive Jacobian) we would somewhere need to pass through some transformation
with Jacobian zero, which would not be invertible and so would not constitute a
good coordinate transformation. Thus the inversion is not continuously connected
to the identity.

(c) The space of points with z = 0 is mapped to itself under inversions. For the
remaining coordinates xµ we have

x̄µ xµ

= . (9)
ηµνxµxν

Let us work out the transformation of the Minkowski metric under this coordinate
transformation; we have for the Jacobian

∂x̄µ

∂xν
=

1

xσxσ

(

δµν − 2
xµxν

1
x

)

( 0)
σxσ

Now direct computation shows

µ

ḡµσ ≡ ηνα
∂x̄

∂xν

∂x̄σ

∂xα
=

1
ηµσ, (11)

(xαx 2
α)

where in the last equality we have expanded out the matrix product using (10)
and combined terms; all terms not proportional to the metric cancel. Thus this is
indeed a conformal transformation with conformal factor (xαxα)

2.

(d) Define the vector bA = (0, bµ), and denote by x̄A the coordinates after the operation
S has been performed. From the definition of S it is clear that the relation between
x̄A and the original coordinates is

x̄A

x̄Bx̄B

=
xA

+ bA (12)
xBxB

We would now like to solve explicitly for x̄A; to do this we contract x̄A with itself
to find an expression for x̄Ax̄A,

1 1
=

x̄Ax̄A xAxA

+ 2
bBxB

+ bAbA (13)
xAxA
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Putting this into the expression above and solving for x̄A we find

x̄A xA + bAxCx
=

C
(14)

1 + 2bCx + (bCb )(xD
C C xD)

This is the explicit expression for S on any point in the interior of AdS; it is easy
to see that for b → 0 this reduces to the identity. Note that our notation hides
the fact that it is crucial that bA point only along the Minkowski space directions;
it cannot have a component along the z direction or this operation fails to be an
isometry.

(e) Taking z → 0 in (14) we find simply that on the Minkowski coordinates it reduces
to

2

xµ xµ + bµx
¯ = (15)

1 + 2b · x+ b2x2

where all dot products are taken with respect to the normal Minkowski metric;
this is precisely the definition of a special conformal transformation.

2. Geodesic motion in AdS

We will work with AdS in global coordinates,

2

ds2 = −(1 + r2) t2
dr

d + + r2dΩ2

1 + r2 d−1 (16)

I have set the AdS radius R → 1, as it drops out if we express everything in terms of
the ratio to E

m
.

For radial motion there is a single useful Killing vector, that for time translation; it
tells us that

E
(1 + r2)ṫ ≡ E = (17)

m

is a constant of the motion (where an overdot denotes a derivative with respect to the
proper time, · ≡ d

dτ
). Note that to obtain the second equality we have assumed that

the “energy” that the problem is referring to is that measured by a proper observer
sitting stationary at r = 0.

We now use the normalization of the four velocity ẋM ẋM = −1 to write down the
equation for radial motion,

ṙ2 + (1 + r2) = E2 (18)

(a) The maximum radius rm is at the turning point when ṙ = 0, i.e. when

rmax =

√

E2

m2
− 1 . (19)
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(b) From (17) and (18) we find an expression for dt
dr
,

dt

dr
=

E
(1 + r2)

√ (20)
E2 − (1 + r2)

Integrating this over a round-trip we find

∆t = 2

∫ rmax

dr
E

0 (1 + r2)
√

E2 − (1 + r2)
= 2ArcTan

(

Er√
)

∣

∣rmax

= π
E2 − 1− r2 0

(21)
Thus the time taken is π.

∣

∣

3. Geodesic distance

We work

(a) Not
poi
all

with the AdS hyperboloid of unit radius

d

X2
−1 +X2

0 −
∑

X2
i = 1 . (22)

i=1

e that by an SO(D, 2) transformation we can put any two timelike separated
nts that are connected by a geodesic completely in the (X−1, X0) plane with
other coordinates 0, i.e. we may write A and B as

XA = (1, 0, 0,
√

· · · ) XB = (a, 1− a2, 0, · · · ) (23)

Now the cross section of the hyperboloid with the (X−1, X0) plane is actually just
a circle that is sitting in a 2

R with negative-definite metric. Thus s(A,B) is the
distance along the circle, whereas σ(A,B) is the (negative square of) the chordal
distance between the two points of the circle. We then find from elementary
geometry that

cos(s(A,B)) = a (24)

and
−σ(A,B) = (1− a)2 + (1− a2) = 2− 2a (25)

from which it trivially follows that

1
cos(s(A,B)) = 1 + σ(A,B) (26)

2

(b) This is rather similar, except that for a spacelike geodesic we use one of the
spacelike directions instead, i.e.

XA = (1, 0, 0, · · · ) XB = (a, 0,
√
a2 − 1, · · · ) (27)

Now the intersection of the hyperboloid with the X−1, X1 plane is a hyperbola, and
to compute the proper distance along it we actually need to perform an integral

s(A,B) =

∫ a

da′

1

√

−
(

dX−1

da′

)2

+

(

dX0

da′

)2

=

∫ a

1

da′
√

1
= ArcCosh(a)

a′2 − 1
(28)
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The direct distance is

σ(A,B) = −(1− a)2 + (a2 − 1) = 2a− 2 (29)

and so we find the relation

1
cosh(s(A,B)) = 1 + σ(A,B) . (30)

2

(c) Note that in our construction of timelike geodesics above, we seemed to find that
all timelike geodesics would eventually return to their starting point after a time
2π, as they moved along a circle in the (X0, X−1) plane. In particular, we could
not make σ(A,B) more negative than −4, as is clear from (26).

Thus it seems that by following timelike geodesics we cannot actually reach points
that are separated by a large timelike distance on the embedding space, even
though they clearly exist on the hyperboloid (22).

4. IR/UV connection in global AdS

Let us compare the metric in global AdS

2

ds2 = −(1 + r2 dt2
dr

) + + r2dΩ2 3
+ r2 d−1 ( 1)

1

with that of the Poincare patch

2

ds2 = r2(−dt2 + dx2 dr
~ ) + (32)

r2

Note that r is not the same coordinate in these two equations, but in both cases the
AdS boundary is towards r → ∞ and the interior is towards r → 0. The topology of
the boundary is different; in the Poincare case the boundary is a flat slice of Minkowski
space, but in the global AdS case the boundary is a sphere times a flat time direction.
In both cases t measures the time on the boundary theory (although again it is not the
same coordinate in these two equations).

There are some other clear differences between these two metrics; note that in the
Poincare patch gtt → 0 as we approach the interior; for sufficiently small r we can have
an arbitrarily small gtt. Thus it seems there is some sort of a horizon at r = 0, and if
we consider a local excitation at small r it can have an arbitrarily small energy when
measured in terms of the time coordinate t. If we think about it, this is exactly what
we expect from a CFT on a flat manifold; by the definition of a CFT, there should be
excitations at arbitrarily low energy. Indeed one can compute (e.g.) the correlation
functions of various operators in real-time; the answers that one gets have spectral
density at arbitrarily low energies, provided the momentum ~k is also taken to be very
low. In other words, we have a continuous spectrum.

The case is different in global AdS. Here we see that we ultimately end up with gtt → 1
as r → 0. Thus it seems that we cannot get arbitrarily small energies; they eventually
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saturate even if we go all the way into the interior. This is what we expect for a CFT
on a sphere; various boundary conditions on the sphere mean that the momentum
cannot be taken arbitrarily low, and so there should be a lowest energy state with
E ∼ 1 l

ls
, where s is the radius of the sphere. Indeed one can compute (e.g.) the same

correlation functions of operators in real-time; one finds instead a discrete spectrum
of energies, with spacing (when measured in terms of boundary time t) in units of the
radius of of the boundary sphere.

5. Holographic principle: bound on the number of degrees of freedom

(a) We know that the number of degrees of freedoms should be bounded by N = A .
4GN

Now for the five dimensional theory we have

(10)
(5) G

GN = N

V5
∼ g2sα

′4

(33)
R5

where we have used the fact that the radius of the 5-sphere is equal to the AdS
radius R. Now evaluating N we find

A
N ∼

4GN

∼ R3L3

δ3
R5

g2sα
′4
∼ L3

δ3
R8

α′4

1
(34)

g2s

Now to express this in terms of field theory objects we use the fact that R8

α′4 =
4πλ ∼ g2YMN and gs = g2YM to find

L3

N ∼ N2 (35)
δ3

This is precisely what we expect for a continuum large N gauge theory.

(b) Not much is different here; we can use for example the metric

ds2

R2
= −(1 + r2)dt2 +

dr2
+ r2dΩ2

1 + r2 d−1 (36)

and repeat precisely the same steps as above, except that now the factor L3 in the
expression for the area is replaced by a dimensionless number related to the size
of the unit 3-sphere. One finds

1
N ∼ N2 (37)

δ3

which is what one expects for a CFT living on a unit sphere with δ a dimensionless
cutoff of some sort.

(c) From (36) one finds that the volume inside a region of (large) radius rc is

rc

V (rc) ∼ R4

∫

dr r2 ∼ R4r3c (38)

6



whereas the area is A(rc) ∼ R3r3c (Note that the integral over dr in the volume
contains an extra factor of 1

r
, meaning that the volume and the area have the same

r-dependence at large r.) Thus the ratio V
AR

is indeed finite at large rc.

However–and this is critical – the dependence on the AdS radius R is different
between the volume and area. The precise agreement of the N2 factor found
above depends on the precise power of R appearing in the expression; it is the
area that correctly reproduces the N2, and not the volume, and thus this is still
rather impressive.
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