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In this chapter, we will focus on: 

1. The spectrum of closed and open strings (for gravity and gauge theories). 

2. The physics of D-branes – nonperturbative objects in string theory. 

3. D-branes as classical gravity (general relativity) solutions. 

2.1: PERTURBATIVE (BOSONIC) STRING THEORY 

2.1.1: GENERAL SET UP 

Consider a string moving in a spacetime M with the metric (µ, ν = 0, 1, ..., d − 1): 

ds2 = Gµν (X)dXµdXν , (1) 

with the worldsheet Σ parametrizations (a = 0, 1): 

Xµ(σ, τ) = Xµ(σa) . (2) 

The induced metric on Σ is written as: 

hab = Gµν ∂aX
µ∂bX

ν , dsind 
2 = hab(σ, τ )dσ

adσb . (3) 

The string action is defined to be proportional to the area of Σ, written in the following Nambu-Goto form: 
ˆ ˆ √1 1 1 

SNG[X
µ] = dA = d2σ −h ; [α'] = L2 → α' = l2 , T = , (4) s2πα' 

Σ 2πα' 
Σ 2πα' 

with ls is the string length scale (from dimensional analysis) and T is the string tension. 

To understand this action, at least at classical level, let’s take a look a nearly static string configuration (small fluctuations) extends in 
X1-direction in a flat spacetime R1,d−1 and choose the worldsheet parametrizations σ0 = X0 and σ1 = X1 (the remaining coordinates 
are Xi, with i = 2, 3, ..., d − 1):   

−1 + (∂0Xi)2 ∂0Xi∂1Xi 
hab = Gµν ∂aX

µ∂bX
ν = (5) 

∂0Xi∂1Xi 1 + (∂1Xi)2    
⇒ −h = 1 − (∂0Xi)2 1 + (∂1X

i)2 + (∂0X
i∂1X

i)(∂0X
j ∂1X

j ) . (6) 

This gives the Nambu-Goto Lagrangian at lowest orders: ˆ     
SNG = d2σLNG , LNG = −T + 

T 
(∂0X

i)2 − (∂1Xi)2 + O (∂Xi)4 . (7) 
2Σ 

From the 0th order, it’s straight-forward to see why T can be identified as the string tension (the energy per unit length of the string). 
The next order shows that the string fluctuations (waves) propagate with the speed of light. 
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Since the nonpolynomial nature of SNG is inconvenient for calculations, it’s much easier to work with the 
Polyakov’s action, which is equivalent to the Nambu-Goto’s action at classical level: 

ˆ
γabSP [γ

ab, Xµ] = 
1 

d2σ 
√
−γγab∂aX

µ∂bX
ν Gµν ; = γab(σ, τ ) . (8) 

4πα ' Σ 

To see this, note that worldsheet stress-energy tensor is defined as: 

δSP
Tab = −4π √ . (9) 

−γδγab 

Since δSP = 0 for variations around the classical solution (on-shell), the equation of motion for γab is Tab = 0. Using: 

√ 1 √ 
δ −γ = − −γγabδγab , (10) 

2 

then the stress-energy tensor can be found: ˆ
−1 1 √ √ 1 √ 1 

d2σ δSP = − δ −γγabhab + −γδγabhab = −γ γabγ
cdhcd − hab δγab (11) 

Σ 4πα 4πα 2 
1 1 1 1 

⇒ Tab = 
α γabγ

cdhcd − hab = 
α Gµν γabγ

cd∂cX
µ∂dX

ν − ∂aXµ∂bX
ν = 0 . (12) 

2 2 

This means γab = Bhab, with B = B(σ, τ) can be arbitrary. Integrate out the worldsheet intrinsic metric field γab: ˆ ˆ√ √ 
SP [γ

ab 1 
d2σ(B−1 d2σ= Bhab, Xµ] = −h)(Bhab)(hab) = 

1 
−h = SNG[Xµ] . (13) 

4πα 
Σ 2πα 

Σ 

In quantum field theories and effective field theories, if different theories are related by field redefinitions that preserve symmetries and 
have the same 1-particle states (Representation Independence Theorem), then the results of observables in spacetime of these theories 
should agree (although the off-shell process might be different but the on-shell calculations are the same, order by order). Hence it is 
very tempting to say that SNG and SP produce the same physics (not only classically but also quantumly), however, the argument is 
only done on actions of polynomial form. Therefore, one shouldn’t think SNG and SP describe the same physics at quantum level; 
SNG simply provoke SP , and the later is much more simple for quantization and computational purposes. 

Equation (5) has the form of a 2D field theory of d scalar fields Xµ couples with gravity – the 2D metric γab (note 
that, X0 field has opposite sign in its kinetic term). Historically, (5) is called a nonlinear σ-model (for SP , the 
scalar fields Xµ which takes on values in a nonlinear target manifold Σ). The string path integral quantization 
will be based on (after taking care of gauge redundancy and adding insertions in ...): 

ˆ 
iSP [γ

ab,Xµ]DγabDXµe ... , (14) 

and this method of quantization has computational advantages as well as conceptual simplicity (especially for a 
general worldsheet Σ with nontrivial topology), but for the sake of understanding the physical spectrum of strings 
(the worldsheet describes the noninteracting asymptotic state is topologically trivial), then canonical quantization 
is more convenient. 

The Polyakov Lagrangian: ˆ
SP = d2σLP . (15) 

Σ 

Work with flat spacetime Gµν = ηµν (M = R1,d−1), then the Polyakov action from the 2D worldsheet perspective 
has 1 set of global symmetry (spacetime Poincare symmetry) and 2 sets of local gauge symmetries (worldsheet 
diffeomorphism symmetry for reparametrization of the worldsheet and Weyl symmetry for rescaling of the 
intrinsic metric): 

1. Global Poincare transformation (translation and Lorentz rotation): 

µXµ(σ, τ ) → Xµ(σ, τ ) + a ; Xµ(σ, τ ) → Λν
µXν (σ, τ ) . (16) 

2. Local diffeomorphism transformation (σa → σ 'a): 

∂σ 'a ∂σ 'b 

Xµ(σ, τ) → X 'µ(σ ' , τ ' ) = Xµ(σ, τ ) , γab(σ, τ) → γ 'ab(σ ' , τ ' ) = γcd(σ, τ) . (17) 
∂σc ∂σd 
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3.	 Local Weyl transformation: 
γab(σ, τ) → e −2ω(σ,τ)γab(σ, τ) . (18)   

Note that, conformal symmetry = Diff × Weyl  symmetry. 
γab 

These symmetries (Poincare and Diff × Weyl) can be used as the guiding principles to (almost) uniquely 
determined the string action in equation (5). Indeed, for example, in a topological invariant of 2D oriented closed 
surfaces, the 2D Einstein-Hilbert action also fits the bill: 

ˆ 	  
Sχ[γ

ab] = λ
1 

d2σ 
√
−γR = λχ(Σ) , χ(Σ) = 2 − 2g .	 (19) 

4π Σ 

Because of the topology nature, Sχ plays the role similar to the vertex weight in quantum field theory. The closed 
λstring coupling is defined to be gc = e . 

For more generalization, a topological invariant of 2D oriented (both closed and open) surfaces that comes from Einstein-Hilbert 
action and boundary extrinsic curvature action (K = ±tanb\atb is the extrinsic curvature of Σ with t ⊥ n and the sign ± depends on 
the type of boundary – timelike: +, spacelike: −) should be included: 

ˆ ˆ
1 √ 1 

Sχ[γ
ab] = λ d2σ −γR + dsK = λχ(Σ) ; χ(Σ) = 2 − 2g − b .	 (20) 

4π 2πΣ ∂Σ 

It’s simple to prove this action is diffeomorphism invariant. To see that Sχ is indeed Weyl invariant γab → e2ω γab, note that: 

Γa	 −ω ω→ Γa + ∂cωδa − ∂dωγ
adγbc , R → e −2ω (R − 2\a∂

aω) , t → e t , na → e na , ds → e ω ds . (21) bc bc + ∂bωδc
a 

b 

Hence: 
aK → e −ω (K  t tan b∂bω) = e −ω (K + n a∂aω) .	 (22) 

Using Stokes theorem: ˆ	 ˆ
1 √	 1 

Sχ → λ d2σ −γ(R − 2\a∂
aω) + ds(K + n a∂aω)	 (23) 

4π	 2πΣ	 ∂Σ ˆ	 ˆ
= Sχ + 

λ 
− d2σ 

√
−γ\a∂

aω) + dsna∂aω	 = Sχ (24) 
2π Σ	 ∂Σ 

Mathematically, the action Sχ only depend on the topological properties of the worldsheet Σ, with χ(Σ) is known as the 
Euler-characteristic of Σ (g is the number of genus and b is the number of open boundary). 2D gravity is dynamically trivial as Sχ 

gives no dynamics: indeed, in 2D, from a purely symmetrical fact: 

Rabcd = Rcdab = −Rbacd = −Rabdc ⇒ Rabcd = Rεabεcd .	 (25) 

This means the worldsheet Ricci scalar: 

R = 2R ,	 Rab = γcdRabcd =
1 
Rγab , (26) 

2 
and the equation of motion for Einstein-Hilbert action (the worldsheet stress-energy tensor Tab = 0 on-shell) is satisfied naturally. 

Because of the topology nature, Sχ in string theory plays the role similar to the vertex weight in quantum field theory: 

1.	 Add a handle to a closed string worldsheet (creates an extra emission and reabsorption of a closed string) will increase the 
number of genus by 1 and change the string path weight. In terms of Feynman diagrams this corresponds to the weight of 
2 vertices, which can be read-off as the closed string coupling gc = eλ . 

2.	 Add a hole to an open string worldsheet (creates an extra emission and reabsorption of an open string) will increase the 
number of boundary by 1 and change the string path weight. In terms of Feynman diagrams this corresponds to the 

λ/2weight of 2 vertices, which can be read-off as the open string coupling go = e . 

In oriented string theories, because of a different between Euclidean and Lorentzian signature, the worldsheet Σ can be treated as a 
Riemann surface (orientable complex manifold) for calculations with imaginary time via analytic continuation (Wick’s rotation). For 
unoriented string theories (eg. type I superstring with orientifold planes), one needs extra works to understand the perturbative 
regime (eg. worldsheets with cross-caps). 
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2.1.2: LIGHT-CONE QUANTIZATION 

Each physical oscillation mode of a string corresponds to a particle in spacetime. For massless mode, closed string 
gives a spin 2 particle (graviton) and open string gives a spin 1 particle (gauge particle, like photon or gluon). 

The gauge symmetries (Diff × Weyl) indicate the redundancy in degrees of freedom, and this must be fixed during quantization. For a 
general topology of the worldsheet Σ, path integral works best for calculation (eg. S-matrix), but for understanding the particle 
spectrum of the theory by quantizing on a trivial topology of single string propagation (long cylinder for closed string and long sheet 
for open string), then canonical quantization (old covariant and light-cone quantization) is simpler and faster. It can be shown that 
these methods of quantization yields the same results for the particle contents [1]. 

The canonical quantization procedure: 

1.	 Write down the classical equation of motion. 

2.	 Fix the gauge symmetries. 

3.	 Find the complete set of classical solution. 

4.	 Promote classical fields (on worldsheet) to quantum operators, satisfying canonical quantization 
condition. The classical solutions become solutions to operator equation, and the parameters in 
classical solutions become creation and annihilation operators. 

5.	 Read-of the spectrum by acting creation operators on the vacuum of the (2D worldsheet) theory. 

For single string propagation, closed string (worldsheet topology S1 × R) can gets spatial parametrization 
σ ∈ [0, 2π] with: 

Xµ(σ, τ) = Xµ(σ, τ ) , γab(σ, τ) = γab(σ + 2π, τ) ,	 (27) 

while open string (worldsheet topology L × R) can gets spatial parametrization σ ∈ [0, π] with boundary conditions 
at σ = [0, π] which can be found by enforcing the nonlocal contribution to δSP when varying δXµ goes away: 

ˆ
1 √ 

δSP = − dτ −γδXµ∂σXµ = 0	 (28) 
2πα ' 

With this, one can impose at the 2 ends either Dirichlet condition (δXµ = 0) or Neumann condition 
(γσa∂aX

µ = 0). Or in other words, na∂aX
µ = 0 with n ⊥ ∂Σ (this indeed gives a glimpse of a nonperturbative 

object in string theory – the D-brane, where strings can end). Let’s just look at the Neumann condition (in all 
directions) for the moment. 

Note that, the boundary condition (at the 2 ends of open string) it is not for the sake of simplicity, but for consistency – only for 
appropriate boundary conditions, can equations of motion be consistently imposed. Indeed, when D-branes are included, the boundary 
contributions to the stringy dynamics is very important. 

The classical equation of motion from (5): 

1.	 For γab: 
1 

Tab = ∂aX
µ∂bXµ − γabγ

cd∂cX
µ∂dX

ν = 0	 (29) 
2 

2.	 For Xµ: 
∂a( 

√
−γγab∂bX

µ) = 0 (30) 
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By diffeormophism, the metric can be put in the conformally flat form γab = e2ω(σ,τ )ηab, and Weyl rescaling can 
be used to get γab = ηab (note that, after this setting one still have a gauge redundancy, called the conformal 
symmetry). 

Indeed, by using the similar trick on a general worldsheet Σ, the whole surface can be cover with a single flat 2D sheet with 
appropriate holes, parametrizations and identifications (which give rise to the moduli and curvature). This trick is extremely useful for 
studying string scattering via the path integral quantization, and has a natural generalization to a superworldsheet in superstring. 

For example, genus g = 1 Riemann surfaces can be built out of a complex plane parametrize by z by cutting-off the regions:  1 1
|z| ≤ (1 − E) |w| ,  ≤ |z| , E « 1 , (31) 

1 − E |w| 

and then glueing the annuli:      1  1 1 1
D0 = {z0 ∈ C (1 − E) |w| < |z0| < |w|} , D∞ = {z0 ∈ C (1 − E)  < |z0| <  } (32) 

1 − E |w| 1 − E |w| 

by the transition function: 
z0 = f,∞(z∞) = wz∞ . (33) 

The complex modulus can be read-off from w. 

To get genus g = 2 surfaces, firstly cut-off 2 more disks:   
|z − a| ≤ (1 − E) |u| , |z − b| ≤ (1 − E) |u| , (34) 

and specify the 2 annular regions Da and Db, then glue these together by a transition map fa,b(z). The transition functions f0,∞(z) 
and fa,b(z) should be in total depend on 3 complex parameters (up to conformal transformation), which is the 3 complex moduli of 
this Riemann surfaces. 

Higher genus (super)Riemann surfaces, or any other general (super)worldsheet Σ, follow a similar procedure. 

With γab = ηab, equation (26) can be rewritten: 

∂τ 
2Xµ − ∂σ

2 Xµ = (∂τ 
2 − ∂σ

2 )Xµ = (∂τ − ∂σ)(∂τ + ∂σ)X
µ = 0 . (35) 

Equation (23) can be further simplified: 

1 
Tττ = Tσσ = (∂τ X

µ∂τ Xµ + ∂σX
µ∂σXµ) = 0 . (36) 

2 
Tτσ = Tστ = ∂τ X

µ∂σXµ = 0 . (37) 

For open string with Neumann condition, ∂σ X
µ(σ = 0, π; τ) = 0. 

Note that equation (31) can be derived from the action obtained by directly setting the flat worldsheet metric for 
the action given in equation (3) (which gives a bunch of free scalar fields). However, quantization of strings is 
different from merely quantization of SP [γ

ab = ηab, Xµ], as one needs to impose the conditions that the stress 
tensor following from that is 0, which are equation (32) and (33) – the Virasoro constraints (nonlinear constraint 
equations). 

µEquation (31) can be immediately solved (x , vµ can be arbitrary constants): 

µXµ(σ, τ) = x + vµτ + Xµ (τ − σ) + Xµ(τ + σ) (38) R L

For closed strings, Xµ and Xµ are independent periodic functions of period 2π. For open strings, from the R L 
Neumann condition, then at the 2 ends ∂σXR = ∂σXL as X

µ = Xµ and is periodic in 2π. From here, one could R L 
quantize SP [γ

ab = ηab, Xµ] first and then impose the Virasoro constraints at quantum level later, or firstly solve 
these constraints explicitly at classical level and then find unconstrained degrees of freedom hence only quantize 
these. Light-cone gauge quantization follows the 2nd approach. 
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After fixing the worldsheet metric, one still have residual gauge freedom (conformal symmetry). Let’s introduce: 

τ ± σ 
σ± = √ , ds2 = −2dσ+dσ− , (39) 

2 

hence this symmetry can be viewed as the preservation of γab = ηab (up to a Weyl rescaling) as: 

σ+ → σ̃+ = f(σ+) , σ− → σ̃− = g(σ−) , ds2 → −2∂+f∂−gdσ
+dσ− . (40) 

Since: 
f(τ + σ) + g(τ − σ)

τ̃ = √ ⇒ τ , (41) 
2 

which has the same form as the classical solution of Xµ, then one can fix the gauge completely by choosing 
appropriate f and g so that: 

X+ X0 ± X1 

τ = 
v+ 

, X± = √ . (42) 
2 

This is known as the light-cone gauge, as the worldsheet time is fixed by the spacetime light-cone coordinate. 

With Xµ = (X+, X−, Xi) (the transverse directions i = 2, 3, ..., d − 1): 

dXµdXµ = −2dX+dX− + dXidXi . (43) 

In light-cone gauge, the Virasoro constraints become: 

2v +∂τ X
− = (∂τ X

i)2 + (∂σX
i)2 , (44) 

v +∂σX
− = ∂τ X

i∂σ X
i , (45) 

therefore, X− can be fully solved in terms of Xi(σ, τ ). Therefore, the independence degrees of freedom are Xi . 
Since X0 has a “wrong” sign for its kinetic terms, no X0 in these degrees of freedom actually partly solve a 
problem of unitarity at quantum level. 
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