# Chapter 2: Deriving AdS/CFT 

MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2014

## Lecture 16

Important equations for this lecture from the previous ones:

1. The spacetime metric from N D3-branes in IIB SUGRA, equation (13) and (14) in lecture 15:

$$
\begin{align*}
& d s^{2}=f(r)\left(-d t^{2}+d \vec{x}^{2}\right)+h(r)\left(d r^{2}+r^{2} d \Omega_{e}^{2}\right)  \tag{1}\\
& f(r)=\frac{1}{h(r)}=H^{-1 / 2}(r) \quad, \quad H(r)=1+\frac{R^{4}}{r} \quad, \quad R^{4}=N \frac{4}{\pi^{2}} G_{N} T_{3}=N 4 \pi g_{s} \alpha^{\prime} \tag{2}
\end{align*}
$$

2. The relation between the gravitational constant $G_{N}$ and string theory's $g_{s}$ and $\alpha^{\prime}$, equation (15) in lecture 12 :

$$
\begin{equation*}
G_{N}=8 \pi^{6} g_{s}^{2} \alpha^{\prime 2} \tag{3}
\end{equation*}
$$

## 2.2: D-BRANES AS SPACETIME GEOMETRY (cont.)

From the spacetime metric given in equation (1) and (2), the physical interpretation of $R$ can be seen:

1. For $r \rightarrow \infty, f(r)=h(r)=1$, as the spacetime geometry is asymptotically flat.
2. For $r \gg R$, then one arrives at the long-range Coulomb potential $\sim \frac{1}{r^{4}}$ in $D=10$ due to a 3 D object:

$$
\begin{equation*}
f(r)=1+\mathcal{O}\left(\frac{R^{4}}{r^{4}}\right) \quad, \quad h(r)=1+\mathcal{O}\left(\frac{R^{4}}{r^{4}}\right) \tag{4}
\end{equation*}
$$

3. For $r \sim R$, the deformation of spacetime metric from D3-branes become significant, with the curvature $\sim R^{-2}$. In order for $\alpha^{\prime} R^{-2} \ll 1$ (so that SUGRA is valid), one need $g_{s} N \gg 1$ and $g_{s} \ll 1$.
4. For $r \rightarrow 0$ as one approaches the D3-branes, then $H(r) \approx \frac{R^{4}}{r^{4}}$ :

$$
\begin{equation*}
d s^{2}=\frac{r^{2}}{R^{2}}\left(-d t^{2}+d \vec{x}^{2}\right)+\frac{R^{2}}{r^{2}} d r^{2}+R^{2} d \Omega_{5}^{2} \tag{5}
\end{equation*}
$$

The spacetime is now factorized into $A d S_{5} \times S^{5}$, with the $S^{5}$ has a constant radius $R$. Another interesting feature of this metric is that $r=0$ is now sits at an infinite proper distance away, as the branes seems to be essentially disappeared (no source) and there're only the deformed geometry and $F_{5}$ flux in spacetime.

Now, we has 2 descriptions of N D-branes:

1. Description A: D-branes in flat spacetime where open strings can end.
2. Description B: Deformed spacetime metric given in equation (4) with $F_{5}$ fluxes on $S^{5}$ where only closed strings can propagate.

These 2 descriptions are expected to be equivalent. In priciple, both of them can be extended to be valid for all $\alpha^{\prime}$ and $g_{s}$. This is a surprising statement, but no much can be done about it, since both sides are complicated and not very well known. In 1997, J. Maldacena considered a special limit of this equivalent, the low energy limit (fixed the energy scale $E$ and take $\alpha^{\prime} \rightarrow 0$, or fixed $\alpha^{\prime}$ and take $E \rightarrow 0$ ), and it is known nowadays as the AdS/CFT correspondence:

1. Description A: Open strings give $\mathcal{N}=4$ SYM theory with the gauge group $U(N)$ and the Yang-Mills coupling $g_{Y M}^{2}=4 \pi g_{s}$, closed strings give graviton and other massless fields, and note that the coupling between massless open and closed strings:

$$
\begin{equation*}
G_{N} \sim g_{s}^{2} \alpha^{\prime 4} \tag{6}
\end{equation*}
$$

As $E \rightarrow 0$, the $\mathcal{N}=4$ SYM decouples from gravitons and other closed string modes. Effectively, the theory is that of $\mathcal{N}=4 \mathrm{SYM}$ and free gravitons.
2. Description B: From the spacetime metric of N D3-branes, one should be careful with which time to use and define the energy. The energy of D3-branes in description A is defined with $t$ given in equation (1), which is the time at $r=\infty$. At a general value of $r$, the local proper time $d \tau=H^{-1 / 4}(r) d t$ so then the local energy $E_{\tau}=H^{-1 / 4} E$. For $r \gg R, H(r) \approx 1$ and $E^{2} \alpha^{\prime} \rightarrow 0$, hence all massive string modes decouple. For $r \ll R, H(r) \approx \frac{R^{4}}{r^{4}}$, and the low energy limit $E^{2} \alpha^{\prime} \rightarrow 0$ means:

$$
\begin{equation*}
E_{\tau}^{2} \frac{r^{2}}{R^{2}} \alpha^{\prime} \rightarrow 0 \Rightarrow E_{\tau}^{2} \frac{r^{2}}{\sqrt{4 \pi g_{s} N}} \rightarrow 0 \tag{7}
\end{equation*}
$$

This means, for any $E_{\tau}$, the low energy limit means $r \rightarrow 0$. Which means, for sufficiently small $r$ (close to the D3-branes), any massive stringy modes are allowed. The $r \rightarrow 0$ region has $A d S_{5} \times S^{5}$ geometry with full stringy description, so the low energy limit is that of the free gravitons at $r=\infty$ and full string theory (with D-branes, which translational dynamics is actually playing an important role) in $A d S_{5} \times S_{5}$ - these 2 sectors decouple.

Equating description A and B at low energy, one has $\mathcal{N}=4$ SYM theory with gauge group $U(N)$ (characterized by $g_{Y M}^{2}$ and $N$ ) is equivalent to the full IIB superstring theory in $A d S_{5} \times S^{5}$ (characterized by $g_{s}$ and $\frac{R^{2}}{\alpha^{\prime}}$ ) with D-branes. With the help from equation (2), one gets the relations:

$$
\begin{equation*}
g_{Y M}^{2}=4 \pi g_{s} \quad, \quad g_{Y M}^{2} N=\frac{R^{4}}{\alpha^{\prime 2}} \quad, \quad \frac{G_{N}}{R^{8}}=\frac{\pi^{4}}{2 N^{2}} \tag{8}
\end{equation*}
$$

## 2.3: AdS/CFT DUALITY

### 2.3.1: AdS SPACETIME

From equation (5), the AdS spacetime metric:

$$
\begin{equation*}
d s^{2}=\frac{r^{2}}{R^{2}}\left(-d t^{2}+d \vec{x}^{2}\right)+\frac{R^{2}}{r^{2}} d r^{2} \tag{9}
\end{equation*}
$$

If $\vec{x}$ is d-dimensional then this metric described $A d S_{d+1}$ spacetime. $R$ is the AdS curvature radius, and $r$ runs from 0 to the boundary $\infty$. From the general relativity Einstein's field equation point of view, AdS is a spacetime of constant curvature with negative cosmological constant:

$$
\begin{equation*}
\mathcal{R}_{M N}-\frac{1}{2} g_{M N}(\mathcal{R}-2 \Lambda)=0 ; \Lambda<0 \tag{10}
\end{equation*}
$$

The solution of the given tensor equation:

$$
\begin{equation*}
\mathcal{R}=\frac{2(d+1)}{d-1} \Lambda, \quad \Lambda=-\frac{1}{2} d(d-1) \frac{1}{R^{2}} \rightarrow \mathcal{R}=-d(d+1) R^{2} \quad, \quad \mathcal{R}_{M N P Q}=-R^{2}\left(g_{M P} g_{N Q}-g_{M Q} g_{N P}\right) \tag{11}
\end{equation*}
$$

Another convenient choice for coordinates in AdS space is $z=\frac{R^{2}}{r^{2}}$, runs from the boundary 0 to $\infty$ :

$$
\begin{equation*}
d s^{2}=\frac{R^{2}}{z^{2}}\left(-d t^{2}+d \vec{x}^{2}+d z^{2}\right) \tag{12}
\end{equation*}
$$

It should be noted that equation (9) and (12) only cover 1 part of the full AdS spacetime, called the Poincare patch. Indeed, to cover the whole AdS spacetime one needs an infinite number of copies of the Poincare patch. The global $A d S_{d+1}$ spacetime can be described as a hyperboloid in a flat Lorentz spacetime of signature $(2, d)$ :

$$
\begin{equation*}
X_{-1}^{2}+X_{0}^{2}-\vec{X}^{2}=R^{2}, \quad d s^{2}=-d X_{-1}^{2}-d X_{0}^{2}+d \vec{X}^{2} \tag{13}
\end{equation*}
$$

Let's look more closely to the geometrical structure of AdS space:

1. The Poincare coordinates:

$$
\begin{equation*}
r=X_{-1}+X_{d}, \quad x^{\mu}=\frac{R}{r} X^{\mu} \tag{14}
\end{equation*}
$$

Therefore, the coordinates described by equation (9) and (12) only corresponds to the $r>0$ branch.
2. The global coordinates:

$$
\begin{equation*}
X_{0}=R \sqrt{1+r^{2}} \cos \tau, \quad X_{-1}=R \sqrt{1+r^{2}} \sin \tau, \quad X_{0}^{2}+X_{-1}^{2}=R^{2}\left(1+r^{2}\right), \quad \vec{X}^{2}=R^{2} r^{2} \tag{15}
\end{equation*}
$$

Let $\tau$ runs from $-\infty$ to $+\infty$, then:

$$
\begin{equation*}
d s^{2}=R^{2}\left(-\left(1+r^{2}\right) d \tau^{2}+\frac{d r^{2}}{1+r^{2}}+r^{2} d \Omega_{d-1}^{2}\right) \tag{16}
\end{equation*}
$$

For $r=\tan \rho$ with $\rho \in\left[0, \frac{\pi}{2}\right]$ :

$$
\begin{equation*}
d s^{2}=\frac{R^{2}}{\cos ^{2} \rho}\left(-d \tau^{2}+d \rho^{2}+\sin ^{2} \rho d \Omega_{d-1}^{2}\right) \tag{17}
\end{equation*}
$$

This choice of coordinates has the AdS center at $\rho=0$ and the $\operatorname{AdS}$ boundary at $\rho=\frac{\pi}{2}$, and the geometry of the boundary is $S^{d-1} \times \mathbb{R}$.
The spacetime interval in the boundary can be calculated with:

$$
\begin{equation*}
d s_{\text {boundary }}^{2} \sim-d \tau^{2}+d \Omega_{d-1}^{2} \tag{18}
\end{equation*}
$$

It takes a light ray $\tau=\frac{\pi}{2}$ to reach the boundary, but a massive particle can never reach the boundary since at some point it will turned back by gravitational pull. The AdS spacetime is like a confining box of size $\sim R$.

MIT OpenCourseWare
http://ocw.mit.edu

### 8.821 / 8.871 String Theory and Holographic Duality

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

