Chapter 3: Duality Toolbox

MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2014

Lecture 21

Let us summarize some important results from last lecture. Consider a bulk scalar field $\Phi(x, z)$ with mass m. In $z \rightarrow 0$ limit, the behavior of Φ is

$$
\begin{equation*}
\Phi(x, z) \rightarrow A(x) z^{d-\Delta}+B(x) z^{\Delta} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\frac{d}{2}+\nu \quad \nu=\sqrt{\frac{d^{2}}{4}+m^{2} R^{2}} \tag{2}
\end{equation*}
$$

The correspondence between boundary CFT operator \mathcal{O} and bulk field Φ works as

$$
\begin{align*}
\text { scaling dimension } & =\Delta \tag{3}\\
\text { source for } \mathcal{O}: \phi(x) & =A(x) \tag{4}\\
\langle\mathcal{O}(x)\rangle & =2 \nu B(x) \tag{5}
\end{align*}
$$

In the example we consider $B(k) \propto A(k)$, i.e. $\langle\mathcal{O}(x)\rangle=0$ if $\phi=0$. In the presence of source $\phi(k)$, the general result for 1-point function is

$$
\begin{equation*}
\langle\mathcal{O}(k)\rangle_{\phi} \sim \phi+\phi^{2}+\cdots \tag{6}
\end{equation*}
$$

In particular, at linear level,

$$
\begin{equation*}
\langle\mathcal{O}(k)\rangle_{\phi}=G_{E}(k) \phi(k) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{E}(x)=\langle\mathcal{O}(x) \mathcal{O}(0)\rangle \Longrightarrow G_{E}(k) \tag{8}
\end{equation*}
$$

by Fourier transformation is the 2-point function, which can also be computed as

$$
\begin{equation*}
G_{E}(k)=\frac{\delta^{2} S}{\delta \phi(k) \delta \phi(-k)}=\frac{\delta}{\delta \phi(k)}\langle\mathcal{O}(k)\rangle_{\phi}=\frac{\langle\mathcal{O}(k)\rangle_{\phi}}{\phi(k)}=\frac{2 \nu B(k)}{A(k)} \tag{9}
\end{equation*}
$$

All above can be generated to other types of operators and corresponding fields.
For higher point functions, recall

$$
\begin{equation*}
\log Z_{C F T}[\phi]=S_{E}\left[\left.\Phi_{c}\right|_{\partial A d S}=\phi\right] \tag{10}
\end{equation*}
$$

We can consider, for instance, the action as

$$
\begin{equation*}
S=-\int d^{d+1} x \sqrt{g}\left(\frac{1}{2}(\partial \Phi)^{2}+\frac{1}{2} m^{2} \Phi^{2}+\frac{\lambda}{3} \Phi^{3}\right) \tag{11}
\end{equation*}
$$

where $\lambda \sim \kappa \sim O(1 / N)\left(G_{N} \sim \kappa^{2}\right)$. Now we need to solve a nonlinear equation of motion to get classical solution

$$
\begin{equation*}
\square \Phi-m^{2} \Phi-\lambda \Phi^{2}=0 \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\lim _{z \rightarrow 0} z^{\Delta-d} \Phi(x, z)=\phi(x) \tag{13}
\end{equation*}
$$

Since λ is small, one can solve (12) perturbatively in $\phi(x)$ and get

$$
\begin{equation*}
\Phi_{c}=\Phi_{1}+\Phi_{2}+\cdots \tag{14}
\end{equation*}
$$

where Φ_{1} is linear in ϕ and Φ_{2} is quadratic in ϕ. Substitute this solution back to the action, we must get

$$
\begin{equation*}
S\left[\Phi_{c}\right]=S_{2}[\phi]+S_{3}[\phi]+\cdots \tag{15}
\end{equation*}
$$

where S_{2} is quadratic in ϕ and S_{3} is cubic in ϕ, which contain 2-point function and 3-point function respectively. In practice, of course it is tedious to go through this. But this is almost the same as standard perturbation theory in a QFT: we use Feynman diagrams!

Recall in a flat space QFT, how we calculate correlation functions. Consider the $\lambda \Phi^{3}$ theory in flat space as (11). To get

$$
\begin{equation*}
\left\langle\Phi\left(x_{1}\right) \Phi\left(x_{2}\right) \cdots \Phi\left(x_{n}\right)\right\rangle \tag{16}
\end{equation*}
$$

Using $\exp (W[J])=\int D \Phi \exp \left(S_{E}+\int d^{d+1} x J(x) \Phi(x)\right)$, and

$$
\begin{equation*}
\left\langle\Phi\left(x_{1}\right) \Phi\left(x_{2}\right) \cdots \Phi\left(x_{n}\right)\right\rangle=\frac{\delta W}{\delta J\left(x_{1}\right) \cdots \delta J\left(x_{n}\right)} \tag{17}
\end{equation*}
$$

it is equivalent to calculate the following Feynman diagram:

Figure 1: Feynman Diagram in flat space
Now back to AdS, one major difference is source $\phi(x)$ lies on the boundary. Then our Feynman diagram should be as follows:

Figure 2: Feynman Diagram in AdS
In the picture, the bulk-to-bulk propagator $G\left(z, x ; z^{\prime}, x^{\prime}\right)$ is given by

$$
\begin{equation*}
\left(\square-m^{2}\right) G\left(z, x ; z^{\prime}, x^{\prime}\right)=\frac{1}{\sqrt{g}} \delta\left(z-z^{\prime}\right) \delta^{(d)}\left(x-x^{\prime}\right) \tag{18}
\end{equation*}
$$

which is the counterpart of standard flat space propagator. In particular, $G\left(z, x ; z^{\prime}, x^{\prime}\right)$ should be normalizable when either of z or z^{\prime} is taken to the boundary, i.e. $G\left(z, x ; z^{\prime}, x^{\prime}\right) \propto z^{\Delta}$ as $z \rightarrow 0$. This is the result of propagator construction from the quantization of normalizable modes. Furthermore, we must also introduce boundary-to-bulk propagator $K\left(z, x, ; x^{\prime}\right)$, which satisfies

$$
\begin{align*}
\left(\square-m^{2}\right) K\left(z, x ; x^{\prime}\right) & =0 \tag{19}\\
K\left(z, x ; x^{\prime}\right) & \rightarrow z^{d-\Delta} \delta^{(d)}\left(x-x^{\prime}\right) \quad(z \rightarrow 0) \tag{20}\\
\Phi(z, x) & =\int d^{d} x^{\prime} K\left(z, x ; x^{\prime}\right) \phi\left(x^{\prime}\right) \tag{21}
\end{align*}
$$

such that Φ computed above behaves like $z^{d-\Delta} \phi(x)$ near the boundary. The analogue of K in flat space is LSZ formula when dealing with external legs.

To summarize, the n-point function in CFT can be calculated as

$$
\begin{equation*}
\left\langle\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right)\right\rangle=\left\langle\Phi\left(x_{1}\right) \cdots \Phi\left(x_{n}\right)\right\rangle \tag{22}
\end{equation*}
$$

where the right hand side can be computed by Feynman diagrams in AdS with end points lying on the boundary.
Remarks:

1. The full partition function can be separated as classical part and quantum fluctuation:

$$
\begin{equation*}
Z_{C F T}=\int_{\left.\Phi\right|_{\partial A d S}=\phi} D \Phi e^{S_{E}[\Phi]}=e^{S_{E}\left[\Phi_{c}\right]} \int D \phi e^{S_{E}\left[\Phi_{c}+\phi\right]-S_{E}\left[\Phi_{c}\right]} \tag{23}
\end{equation*}
$$

where $S_{E}\left[\Phi_{c}\right]$ corresponds to tree-level diagrams and ϕ integral is loop diagrams that can be captured by standard Feynman rules.
2. The complete analogue of standard flat space Green functions are $\left\langle\Phi\left(z_{1}, x_{1}\right) \cdots \Phi\left(z_{n}, x_{n}\right)\right\rangle$ that only includes bulk-to-bulk propagators. It is natural to expect

$$
\begin{equation*}
\left\langle\Phi\left(x_{1}\right) \cdots \Phi\left(x_{n}\right)\right\rangle \propto \lim _{z_{1} \rightarrow 0} \cdots \lim _{z_{n} \rightarrow 0}\left\langle\Phi\left(z_{1}, x_{1}\right) \cdots \Phi\left(z_{n}, x_{n}\right)\right\rangle \tag{24}
\end{equation*}
$$

This boils down to finding the relation between $K\left(z, x ; x^{\prime}\right)$ and $\lim _{z^{\prime} \rightarrow 0} G\left(z, x ; z^{\prime} x^{\prime}\right)$, which we will discuss more explicitly in pset. The crucial result is

$$
\begin{equation*}
\left\langle\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right)\right\rangle=\lim _{z_{1} \rightarrow 0} 2 \nu_{1} z_{1}^{-\Delta_{1}} \cdots \lim _{z_{n} \rightarrow 0} 2 \nu_{n} z_{n}^{-\Delta_{n}}\left\langle\Phi\left(z_{1}, x_{1}\right) \cdots \Phi\left(z_{n}, x_{n}\right)\right\rangle \tag{25}
\end{equation*}
$$

3.1.7: WILSON LOOPS

Wilson loops

$$
\begin{equation*}
W[C]=\operatorname{Tr} \mathcal{P} \exp \left[i \int_{C} A_{\mu} d x^{\mu}\right] \tag{26}
\end{equation*}
$$

are most non-local operators in a gauge theory. Here C is a closed path in space time, $A_{\mu} \equiv A_{\mu}^{a} T^{a}$ where T^{a} is often in fundamental representation and \mathcal{P} is path ordering. The physical meaning of Wilson loops is phase factor associated with transporting an "external" (quark) particle in a given representation along C. The simplest observable related to it is $\langle 0| W[C]|0\rangle$, although we can also consider for some vacuum with temperature $\langle\Psi| W\left[C_{1}\right] W\left[C_{2}\right] \cdots|\Psi\rangle$. An often used loop is as follows

Figure 3: Square Wilson loop
In this picture $T \gg L$. From Wilson loop calculation in QFT, we know $\langle W(C)\rangle \simeq e^{-i E T}$ where E is the potential energy between an external "quark" and "anti-quark".

How to calculate $\langle W(C)\rangle$ in $\mathcal{N}=4$ SYM using gravity? First we need to understand how to introduce an external quark in $\mathcal{N}=4 \mathrm{SYM}$ and its AdS description. Suppose we have $N+1$ D3 branes piled upon each other. If we separate one of them along one perpendicular direction for distance $|\vec{r}|$ (shown in the following picture), the open string connecting those D3 branes will break symmetry from $S U(N+1)$ to $S U(N) \times U(1)$ and we will have some strings with two end points located on the separated D3 brane and the rest N ones respectively. If we consider the fluctuation field living on those D3 branes, this gives a description of a particle ("quark") in fundamental representation of $S U(N)$ with mass $M=\frac{|\vec{r}|}{2 \pi \alpha^{\prime}}$ from symmetry breaking.

Figure 4: D3 brane separation
Now consider the low energy limit of Maldacena, $\alpha^{\prime} \rightarrow 0$ and $r \rightarrow 0$ keeping r / α^{\prime} finite such that remaining in $\mathcal{N}=4$ SYM. In the resulted gravity side, $N \mathrm{D} 3$ branes have disappeared, one finds only one D3 brane in $A d S_{5} \times S^{5}$ which located at \vec{r} and the other N D3 branes disappeared at $r=0$ such that we get a "string" hanging from the D 3 brane at \vec{r} to $r=0$. If we want the "quark" to have infinite mass, we should take $r \rightarrow \infty$, i.e. to the boundary of AdS. In this case, the external "quark" with $M \rightarrow \infty$ in $\mathcal{N}=4$ SYM can be interpreted in bulk as a "string" hanging from the AdS boundary to deep interior and the hanging point is the location of the quark.

MIT OpenCourseWare
http://ocw.mit.edu

8.821 / 8.871 String Theory and Holographic Duality

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

