Chapter 3: Duality Toolbox

MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2014

Lecture 22

Note: parallel transport of such an "external quark" gives a slightly different object from that in an ordinary gauge theory, as it couples also to the scalar fields in $\mathcal{N}=4$ SYM. Geometrically, strings pull D-branes. One can show

$$
\begin{equation*}
W(C)=\operatorname{Tr} \mathcal{P} \exp i \int d s\left(A_{\mu} \frac{d x^{\mu}}{d s}+\vec{n} \cdot \vec{\Phi} \sqrt{\dot{x}^{2}}\right) \tag{1}
\end{equation*}
$$

where \vec{n} is a unit vector on S^{5} and $\vec{\Phi}$ is six scalar fields of $\mathcal{N}=4$ SYM.
Now consider this "quark" traverses some loop C on the boundary. Since (i) the quark is the end point of a string in AdS, C must be the boundary of a string worldsheet Σ, i.e. $C=\partial \Sigma$; (ii) the "partition function" for this quark system is $\langle W(C)\rangle$, we thus expect

$$
\begin{equation*}
\langle W(C)\rangle=Z_{\text {string }}[\partial \Sigma=C] \tag{2}
\end{equation*}
$$

which is the single string partition function whose worldsheet has boundary C. We know

$$
\begin{equation*}
Z_{\text {string }}[\partial \Sigma=C]=\int_{\partial \Sigma=C} D X e^{i S_{\text {string }}} \tag{3}
\end{equation*}
$$

where $S_{\text {string }}=S_{N G}$ or $S_{\text {Polyakov }}$, i.e.

$$
\begin{equation*}
S_{N G}=-\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{-\operatorname{det} h_{\alpha \beta}} \quad h_{\alpha \beta}=g_{M N} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} \tag{4}
\end{equation*}
$$

Recall the Maldacena limit

$$
\begin{aligned}
& g_{s} \rightarrow 0: \text { neglect other topologies (no splitting and joining of strings) } \\
& \alpha^{\prime} \rightarrow 0: \text { can evaluate path integral by saddle-point approximation (no fluctuation) }
\end{aligned}
$$

and this limit is equivalent to $N \rightarrow \infty$ and $\lambda \rightarrow \infty$. Under this limit, we should expect

$$
\begin{equation*}
\langle W(C)\rangle=Z_{\text {string }}[\partial \Sigma=C]=e^{i S_{c l}[\partial \Sigma=C]} \tag{5}
\end{equation*}
$$

where $S_{c l}$ is the action evaluated at a classical string solution.
Let us see some examples. The simplest one is a static quark, which connects a single string stretching to the interior of AdS. We know such an isolated Wilson loop evaluated as $\langle W(C)\rangle=e^{-i M T}$ where M is the mass of the quark. On the bulk side, in Poincare patch,

$$
\begin{equation*}
d s^{2}=\frac{r^{2}}{R^{2}}\left(-d t^{2}+d \vec{x}^{2}\right)+\frac{R^{2}}{r^{2}} d r^{2} \quad\left(r=\frac{R^{2}}{z}\right) \tag{6}
\end{equation*}
$$

using reparametrization freedom on the worldsheet, one can choose the coordinate on worldsheet as $\sigma^{\alpha} \equiv(\tau, \sigma)=$ (t, r). One obvious solution is

$$
\begin{equation*}
X^{i}(\sigma, \tau)=\text { const } \quad(\text { static string }) \tag{7}
\end{equation*}
$$

where the worldsheet metric becomes

$$
\begin{equation*}
d s_{w s}^{2}=g_{M N} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} d \sigma^{\alpha} d \sigma^{\beta}=-\frac{r^{2}}{R^{2}} d t^{2}+\frac{R^{2}}{r^{2}} d r^{2} \tag{8}
\end{equation*}
$$

Plug into the Nambu-Goto action, we get

$$
\begin{equation*}
S_{N G}=-\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{-\operatorname{det} h}=-\frac{1}{2 \pi \alpha^{\prime}} \int d t \int_{0}^{\infty} d r=-\frac{1}{2 \pi \alpha^{\prime}} T \Lambda \tag{9}
\end{equation*}
$$

where Λ is the cutoff of r. This shows the mass of the quark should be $M=\frac{\Lambda}{2 \pi \alpha^{\prime}}$ as expected from D-brane calculation. The infinite mass refers to "external quark" by design. If we write the result in terms of z, introducing $\epsilon=R^{2} / \Lambda$ as the short-distance cutoff, one get

$$
\begin{equation*}
M=\frac{1}{2 \pi \alpha^{\prime}} \frac{R^{2}}{\epsilon}=\frac{\sqrt{\lambda}}{2 \pi \epsilon} \quad\left(\sqrt{\lambda}=\frac{R^{2}}{\alpha^{\prime}}\right) \tag{10}
\end{equation*}
$$

This corresponds to self energy in strong coupling of CFT on the boundary. Recall in QED Wilson loop calculation, $E_{\text {self }} \sim e^{2} / \epsilon \sim \alpha / \epsilon$, the dependence on the coupling constant is proportional to α not like here where it goes like $\alpha^{1 / 2}$.

The second example is the static potential between a quark and anti-quark. The Wilson loop is as follows

Figure 1: Square Wilson loop
In this picture $T \gg L$. As explained before, this corresponds to a static pair of quark and anti-quark with distance L. The total energy is $E_{t o t}=2 M+V(L)$ and Wilson loop is evaluated as $\langle W(C)\rangle=e^{-i E_{t o t} T}$. We will see how gravity will help us to calculate the potential $V(L)$ for $N \rightarrow \infty$ and $\lambda \rightarrow \infty$.

Choose $\sigma^{\alpha} \equiv(\tau, \sigma)=(t, z)$ for string coordinate. We would have the string hanging from two quarks on the boundary in AdS as shown below.

Figure 2: String hanging in AdS
Since T is very large, translation symmetry in time requires that $X_{1}=X_{1}(\sigma)$ and $X^{i}=$ const. Alternatively, we can also choose the worldsheet parameter as $\sigma^{\alpha} \equiv(\tau, \sigma)=\left(t, X_{1}\right)$ and $z=z(\sigma)$ is the position of the string with boundary condition $z(\pm L / 2)=0$. Then the worldsheet metric becomes

$$
\begin{equation*}
d s_{w s}^{2}=\frac{R^{2}}{z^{2}}\left(-d \tau^{2}+\left(1+z^{\prime 2}\right) d \sigma^{2}\right) \tag{11}
\end{equation*}
$$

where $z^{\prime} \equiv d z / d \sigma$ which implies the action to be

$$
\begin{equation*}
S_{N G}=-\frac{R^{2}}{2 \pi \alpha^{\prime}} T \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{d \sigma}{z^{2}} \sqrt{1+z^{\prime 2}}=-\frac{R^{2}}{\pi \alpha^{\prime}} T \int_{0}^{\frac{L}{2}} \frac{d \sigma}{z^{2}} \sqrt{1+z^{\prime 2}} \tag{12}
\end{equation*}
$$

where in the last step we used the reflection symmetry $z(\sigma)=z(-\sigma)$. Now we need to extremize it to find $z(\sigma)$. One expect the integral to be divergent near $z=0$ as $S_{N G}$ contains contribution $2 M T$ but we can cut off at $z=\epsilon$. With the self energy obtain above, we get the potential to be

$$
\begin{equation*}
V(L)=\frac{\sqrt{\lambda}}{\pi} \int_{\epsilon}^{\frac{L}{2}} \frac{d \sigma}{z^{2}} \sqrt{1+z^{\prime 2}}-2 \frac{\sqrt{\lambda}}{2 \pi \epsilon}=\frac{\sqrt{\lambda}}{\pi}\left(\int_{\epsilon}^{\frac{L}{2}} \frac{d \sigma}{z^{2}} \sqrt{1+z^{\prime 2}}-\frac{1}{\epsilon}\right) \tag{13}
\end{equation*}
$$

We define \mathcal{L} as $\frac{1}{z^{2}} \sqrt{1+z^{\prime 2}}$. Since \mathcal{L} does not depend on σ explicitly, the Hamiltonian (canonical momentum with respect to σ) is a constant,

$$
\begin{equation*}
z^{\prime} \Pi_{z}-\mathcal{L}=\text { const } \quad \Pi_{z}=\frac{\partial \mathcal{L}}{\partial z^{\prime}} \tag{14}
\end{equation*}
$$

which can be solved out to be

$$
\begin{equation*}
\frac{1}{z^{2} \sqrt{1+z^{\prime 2}}}=\mathrm{const} \tag{15}
\end{equation*}
$$

From reflection symmetry, at $\sigma=0, z^{\prime}(0)=0$ and $z(0)=z_{0}$, we know the constant is exactly $1 / z_{0}^{2}$. Hence we get

$$
\begin{equation*}
z^{\prime 2}=\frac{z_{0}^{4}-z^{4}}{z^{4}} \tag{16}
\end{equation*}
$$

which can be easily integrated to get z. Note z_{0} can be fixed by requiring $z(L / 2)=0$ as

$$
\begin{equation*}
z_{0}=L \frac{\sqrt{\pi}}{2} \frac{\Gamma(1 / 4)}{\Gamma(3 / 4)} \tag{17}
\end{equation*}
$$

Plug (16) into (13), we have

$$
\begin{equation*}
V(L)=\frac{\sqrt{\lambda}}{\pi}\left(z_{0}^{2} \int_{\epsilon}^{z_{0}} \frac{d z}{z^{2} \sqrt{z_{0}^{4}-z^{4}}}-\frac{1}{\epsilon}\right)=\frac{\sqrt{\lambda}}{\pi z_{0}}\left(\int_{\frac{\epsilon}{z_{0}}}^{1} \frac{d y}{y \sqrt{1-y^{2}}}-\int_{\frac{\epsilon}{z_{0}}}^{\infty} \frac{d y}{y^{2}}\right)=-\frac{\sqrt{\lambda}}{L} \frac{4 \pi^{2}}{\Gamma^{4}(1 / 4)} \tag{18}
\end{equation*}
$$

Remarks

1. This potential is finite and negative, which means the interaction is attractive.
2. $\quad L^{-1}$ dependence same as coulomb potential is from scale invariance.
3. $\quad \sqrt{\lambda}$ dependence on coupling constant is the result of strong coupling predicted from gravity. In weak coupling case, $V \propto-\frac{\lambda}{L}$.
4. $\quad z_{0} \propto L$ shows the IR/UV connection since larger z_{0} corresponds to lower energy binding of the quark pair on the boundary.

3.2: GENERALIZATIONS

3.2.1: FINITE TEMPERATURE

So far we have following duality

$$
\begin{aligned}
\text { string in } \mathrm{AdS}_{5} \times S^{5} & \Longleftrightarrow \mathcal{N}=4 \mathrm{SYM} \\
\text { normalizable solution } & \Longleftrightarrow \text { state } \\
\text { pure } \mathrm{AdS}_{5} \times S^{5} & \Longleftrightarrow \text { vacuum }
\end{aligned}
$$

A natural question raises: what does the thermal state in SYM correspond to? The gravity description should satisfy:

1. It is asymptotic AdS_{5} (normalizable)
2. It has a finite temperature T and satisfies all laws of thermodynamics
3. For Poincare patch, translationally invariant and rotationally invariant along boundary directions.

Regarding these conditions, here are two candidates:

1. Thermal gas in AdS
2. Black hole.

The thermal gas lives in AdS can be described by Euclidean AdS metric

$$
\begin{equation*}
d s^{2}=\frac{R^{2}}{z^{2}}\left(d \tau^{2}+d z^{2}+d \vec{x}^{2}\right) \tag{19}
\end{equation*}
$$

with periodicity $\tau \sim \tau+\beta$. Furthermore, for fermions we should require the partition function to be anti-periodic in τ. But this solution has two disadvantages, the first is that there is a curvature singularity at $z \rightarrow \infty$; the second is that strings winding around τ direction develop techyons, which will be unstable.

For black hole, we need to find a solution with an event horizon which is topologically \mathbb{R}^{d-1}. Taking the ansatz

$$
\begin{equation*}
d s^{2}=\frac{R^{2}}{z^{2}}\left(-f(z) d t^{2}+d \vec{x}^{2}\right)+\frac{R^{2}}{z^{2}} g(z) d z^{2} \tag{20}
\end{equation*}
$$

we can solve Einstein equations to get

$$
\begin{equation*}
f(z)=1 / g(z)=1-\frac{z^{d}}{z_{0}^{d}} \tag{21}
\end{equation*}
$$

where z_{0} is a constant, which characterize the position of horizon. Using the standard trick going to Euclidean signature, one finds

$$
\begin{equation*}
\beta=\frac{1}{T}=\frac{4 \pi}{d} z_{0} \Longrightarrow T=\frac{d}{4 \pi z_{0}} \tag{22}
\end{equation*}
$$

This is the temperature measured in boundary, and $z_{0} \propto T^{-1}$ shows again the IR/UV connection. Now we can obtain thermodynamical behavior of strongly coupled $\mathcal{N}=4 \mathrm{SYM}(N \rightarrow \infty$ and $\lambda \rightarrow \infty)$ from black hole thermodynamics $(d=4)$. The entropy of black hole is

$$
\begin{equation*}
S_{B H}=\frac{A_{3}}{4 G_{5}} \quad A_{3}=\frac{R^{3}}{z_{0}^{3}} \int d x_{1} d x_{2} d x_{3} \tag{23}
\end{equation*}
$$

We can define the entropy density as

$$
\begin{equation*}
s=S / \int d x_{1} d x_{2} d x_{3}=\frac{R^{3}}{z_{0}^{3}} \frac{1}{4 G_{5}}=\frac{\pi^{2}}{2} N^{2} T^{3} \quad\left(\frac{G_{5}}{R^{3}}=\frac{\pi}{2 N^{2}}\right) \tag{24}
\end{equation*}
$$

which is proportional to N^{2} as expected from CFT entropy. One can also obtain the energy density and pressure from $\left\langle T_{\mu \nu}\right\rangle$, which can be calculated from the counterpart of \mathcal{O} in scalar story, i.e.

$$
\begin{equation*}
\left\langle T_{\mu \nu}\right\rangle \propto \frac{1}{z_{0}^{4}} \sim T^{4} \tag{25}
\end{equation*}
$$

as expected for a CFT in $d=4$. But getting the precise numerical factors takes some efforts. It is easier to use thermodynamics:

$$
\begin{align*}
s=-\frac{\partial f}{\partial T} & \Longrightarrow f=-\frac{\pi^{2}}{8} N^{2} T^{4} \tag{26}\\
& \Longrightarrow e=f+T s=\frac{3 \pi^{2}}{8} N^{2} T^{4} \tag{27}
\end{align*}
$$

where f is free energy density and e is energy density. Note these classical gravity results are only valid at $\lambda \rightarrow \infty$.
Now we can compare with free theory results:

$$
\begin{equation*}
s_{\lambda=0}=\left(8+8 \times \frac{7}{8}\right) \times \frac{2 \pi^{2}}{45} T^{3}\left(N^{2}-1\right)=\frac{2}{3} \pi^{2} N^{2} T^{3} \quad(N \rightarrow 0) \tag{28}
\end{equation*}
$$

where the first 8 is for 8 bosons and the second is for 8 fermions in $\mathcal{N}=4 \mathrm{SYM}$. We find the ratio is crucial

$$
\begin{equation*}
\frac{s_{\lambda=\infty}}{s_{\lambda=0}}=\frac{3}{4} \tag{29}
\end{equation*}
$$

since many examples of CFT duals are known in $d=4$ which have

$$
\begin{equation*}
\frac{s_{\text {strong }}}{s_{\text {free }}}=\frac{3}{4} h \tag{30}
\end{equation*}
$$

where for many theories $\frac{8}{9} \leq h \leq 1.09$.
In the pset you will study the behavior of Wilson loop at a finite T. The physical expectation is: when L is sufficiently large $V(L) \rightarrow 0$. This is called "color screening" in QCD. The gravity dual is shown in the following picture, where in small L it is similar as zero temperature but in large L the string connecting two quarks becomes alike two very straight strings hanging from two quarks respectively that looks like two free static quarks.

Figure 3: String hanging in AdS black hole

MIT OpenCourseWare
http://ocw.mit.edu

8.821 / 8.871 String Theory and Holographic Duality

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

