8.821/8.871 Holographic duality

MIT OpenCourseWare Lecture Notes

Hong Liu, Fall 2014

Lecture 3

Rindler spacetime and causal structure

To understand the spacetime structure of a black hole, let us consider the region near (but outside) the horizon. Introducing the proper distance ρ from the horizon:

$$d\rho = \frac{dr}{\sqrt{f}} \stackrel{r \to r_s}{=} \frac{dr}{\sqrt{f'(r_s)(r - r_s) + \cdots}}$$

Solving the above equation we have

$$\rho = \frac{2}{\sqrt{f'(r_s)}}\sqrt{r-r_s} + \cdots$$

Then we can express f as a function of ρ

$$f(r) = f'(r_s)(r - r_s) + \dots = (\frac{1}{2}f'(r_s))^2\rho^2 + \dots = K^2\rho^2 + \dots$$

where K is the surface gravity defined in Lecture 2.

Near the horizon, we have

$$ds^{2} = -K^{2}\rho^{2}dt^{2} + d\rho^{2} + r_{s}^{2}d\Omega_{2}^{2} = -\rho^{2}d\eta^{2} + d\rho^{2} + r_{s}^{2}d\Omega_{2}^{2}$$

here we define $\eta = Kt = \frac{t}{2r_s}$. The first two terms in the above expression is called (1+1)d Minkowski metric in a Rindler form.

To see this, consider \mathcal{M}_2 (2d Minkowski spacetime):

$$ds_{\mathcal{M}_2}^2 = -dT^2 + dX^2$$

let $X = \rho \cosh \eta$, $T = \rho \sinh \eta$, then

$$ds_{\mathcal{M}_2}^2 = -\rho^2 d\eta^2 + d\rho^2$$

But since $X^2 - T^2 = \rho^2 \ge 0$, (ρ, η) coordinates only covers a part of \mathcal{M}_2 . And $\rho \ge 0$ sector corresponds to $X \ge 0$ *i.e.* region I as shown in Fig. 1.

Figure 1: Casual structure of \mathcal{M}_2 in the Rindler form.

Note that

$$\begin{split} X &= T(X > 0): \quad \eta \to \infty, \rho \to 0 \text{ with } \rho e^{\eta} \text{ finite} \\ X &= -T(X > 0): \quad \eta \to -\infty, \rho \to 0 \text{ with } \rho e^{-\eta} \text{ finite} \\ X &= T = 0: \quad \rho \to 0, \text{any finite } \eta \end{split}$$

thus the horizon of a black hole $\rho = 0$ is mapped to the light cone $X = \pm T$. And near-horizon black hole geometry can be viewed as *Rindler* $\times S^2$ as shown in Fig. 2.

Figure 2: Near-horizon black hole geometry.

Remarks:

1. An observer at r = const $(r \gtrsim r_s)$ is mapped to and observer with $\rho = const$ in a Rindler patch, *i.e.* an observer in Minkowski spacetime following a hyperbolic trajectory

$$X^2 - T^2 = \rho^2 = const$$

One thing to check here is such an observer has a constant proper acceleration

$$a = \frac{1}{\rho} = \frac{f'(r_s)}{2} \frac{1}{\sqrt{r - r_s}}$$

And furthermore, the acceleration seen by O_{∞} would be $a_{\infty} = a(r)f^{1/2}(r) = K$.

- 2. A free-fall observer near a black hole horizon is equal to an inertial observer in \mathcal{M}_2 .
- 3. Rindler coordinates (ρ, η) become singular at $\rho = 0$, but using Minkowski coordinates (X, T), one could extent region I to the full Minkowski spacetime. Similarly, by changing to suitable coordinates (Kruskal coordinates), one can extend the Schwarzschild spacetime to four patches (Fig. 3).
 - Clearly, no information or observer in region II can reach region I (separated by a future horizon).
 - Region III and IV are related to I and II by time reversal. They do not exist for real black holes formed from gravitational collapse. Observer in region I cannot influence events in region IV (separated by a past horizon).
 - At r = 0, there is a black hole singularity, called curvature singularity which is space-like.

Penrose diagrams

In this section, we study Penrose diagrams, which are used to visualize the global causal structure of a spacetime.

In the following, we show the steps to draw a Penrose diagram of a spacetime. We start with the metric:

$$ds^2 = g_{ab}(x)dx^a dx^b$$

Figure 3: Schwarzschild blackhole geometry in Kruskal coordinates.

- 1. Find a coordinate transformation $x^a = x^a(y^\alpha)$ so that y^α has a finite the range (map the whole spacetime to a finite region).
- 2. Construct a new metric which is conformally related to the original one

$$d\tilde{s}^2 = \Omega^2(y)ds^2 = \tilde{g}_{\alpha\beta}(y)dy^{\alpha}dy^{\beta}$$

such that $\tilde{g}_{\alpha\beta}$ is simple. $d\tilde{s}^2$ and ds^2 have the same causal structure as null rays are preserved by conformal scalings.

Example: (1+1)d Minkowski space

$$ds^{2} = -dT^{2} + dX^{2} = -dUdV; \quad U = T - X, V = T + X$$

let $U = \tan u, V = \tan v$, then $u, v \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. We define the following:

 i_0 : spatial infinity (X infinite, T finite)

- i_+ : time-like future infinity $(T \to \infty, X \text{ finite})$
- i_{-} : time-like past infinity $(T \to -\infty, X \text{ finite})$
- I_+ : null future infinity (where all null rays end)
- I_{-} : null past infinity (where all null rays start)

And we can label these points (lines) accordingly in the Penrose diagram for \mathcal{M}_2 (Fig. 4)

Figure 4: \mathcal{M}_2 Penrose diagram.

Another more interesting example is the Schwarzschild black hole

$$ds^{2} = -fdt^{2} + \frac{1}{f}dr^{2} + r^{2}d\Omega_{2}^{2}$$

- 1. We first consider (r, t) plane
- 2. Then we go to a coordinate system (Kruskal) which covers all four regions (analogue of U, V in Minkowski spacetime)
- 3. Next we make a coordinate transformation to make the new coordinate has a finite range

 $(U, V) \rightarrow (u, v)$

In the end, we get the Penrose diagram of Schwarzschild black hole as shown in the right panel of Fig. 5

Figure 5: Schwarzschild black hole Penrose diagram.

1.2.3 black hole temperature

In this section, we will show that a black hole has a temperature, as viewed by a stationary observer outside the black hole. First we need to define the temperature. Recall that in QFT, to describe a system at finite temperature (T), we analytically continue to Euclidean signature, *i.e.* $t \to -i\tau$. And let τ to be periodic: $\tau \sim \tau + \hbar\beta$, with $\beta = \frac{1}{T}$. Notice that here we have also adapted the convention $k_B = 1$. Conversely if Euclidean continuation of a QFT is periodic in time direction, we can conclude that the QFT is at finite temperature. This is exactly what we are going to do to interpret the temperature of a black hole.

If we analytically continue the Schwarzschild metric to Euclidean signature with $t \rightarrow -i\tau$

$$ds_E^2 = f d\tau^2 + \frac{1}{f} dr^2 + r^2 d\Omega_2^2$$

Near the horizon

$$ds_{E}^{2} = \rho^{2}K^{2}d\tau^{2} + d\rho^{2} + r^{2}d\Omega_{2}^{2} = \rho^{2}d\theta^{2} = d\rho^{2} + r_{s}^{2}d\Omega_{2}^{2}; \quad \theta = K\tau = \frac{\tau}{2r_{s}}$$

Note that the first two terms above describe a polar coordinates in Euclidean \mathcal{R}^2 . This metric has a conical singularity unless θ is periodic in 2π , *i.e.* $\theta \sim \theta + 2\pi$. Since horizon is non-singular in Lorentzian signature, it should not be singular in Euclidean. Hence τ must be periodic

$$\tau \sim \tau + \frac{2\pi}{K}$$

Recall that t is the proper time for an observer at $r = \infty$, an observer at $r = \infty$ must feel a temperature:

$$T = \frac{1}{\beta} = \frac{\hbar K}{2\pi} = \frac{\hbar}{8\pi G_N m}$$

For an observer at some r, since $dt_{loc} = f^{1/2}(r)dt$, we have

$$T_{loc}(r) = \frac{\hbar K}{2\pi} f^{-1/2}(r)$$

This local temperature goes to ∞ as we approach the horizon, *i.e.* the black hole horizon is a very hot place for a stationary observer!

Similarly for Rindler spacetime

$$ds^2 = -\rho^2 d\eta^2 + d\rho^2 \rightarrow \eta = -i\theta ds_E^2 = \rho^2 d\theta^2 + d\rho^2$$

Since θ must be periodic in 2π , we define the local proper time: $d\tau_{loc}^2 = \rho^2 d\theta^2$. Then τ_{loc} must be periodic

$$T_{loc}^{Rindler}(\rho) = \frac{\hbar}{2\pi\rho} = \frac{\hbar a}{2\pi}$$

where we have used the relation $a = \frac{1}{\rho}$. So in Minkowski spacetime, an accelerated observer will feel a temperature proportional to its acceleration!

So now we have a quite simple derivation of black hole temperature as shown above, but one needs to dig further on the physics behind this simple picture. 8.821 / 8.871 String Theory and Holographic Duality Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.