Another Method

- construct SCETII operators using SCETI
i) Match $Q \subset D$ onto SCETI usoft $P_{e}^{2} \sim \Lambda^{2}$
collinear $\quad P_{c}^{2} \sim Q 人$
ii) Factorize usoft with field redefinition
iii) Match SLETI onto SLETIII
soft $\quad P_{s}^{2} \sim \Lambda^{2}$
collin $P_{c}^{2} \sim \Lambda^{2}$

Notes. this gives us a simple procedure to construct SCETII ops. (even thous thay're son-local)

- usoft fields in I ore renowned soft for II
eg.
i) $J^{I}=\left(\bar{q}_{n} \omega\right) r_{\mathrm{h}}$
ii) $J^{I}=\left(\bar{\xi}_{n}^{(0)} \omega^{(0)}\right) \Gamma\left(y^{+} h_{J}\right)$
iii) $\sigma^{\underline{I}}=\left(\bar{q}_{n} \omega\right) \Gamma\left(s^{+} h_{v}\right)$ sebefare
\uparrow
here all T-product, in SCET $\&$ SLET , match UP, so matching was trivial
"Thy". In Cases where we hove T-products in SCETI with $\geqslant 2$ operators involving both collin $\&$ usoft fields, we can generate a nor-trivial coefficient in SCETII (ie t-function J)
T. $\int d p_{-} d k_{+} J\left(p_{-}, k_{+}\right) \sqrt{(q \omega)_{p-} \Gamma\left(s^{2} q_{s}\right)_{k^{+}}}$

$$
\uparrow
$$

SLETI loops in. D's allow $P^{2} \simeq Q \wedge \quad k^{+}$dependence
sg. two operators

c
When we lower offs helle of ext. collin fields the intermadrat line still hoo $P^{2} \sim Q \wedge$ and must reals be integrated out

PC. $\quad T^{I} \sim \lambda^{2 k} \Rightarrow O^{I I} \sim \eta^{k+E}$

Where $\lambda^{2}=\eta=\frac{\Lambda}{Q}$,
factor $E>0$ from charming the scaly of ext. fields ag

$$
\begin{aligned}
& \eta_{I} \sim \lambda \\
& \eta_{\text {II }} \sim \eta=\lambda^{2}
\end{aligned}
$$

\Rightarrow No mixed soft -collin X at lady order

- after field redefn no mixed \mathcal{L} ops at LO
- mixed $y_{ \pm}^{(1)}$ sim $T\left\{y_{ \pm}^{(1)}, y_{ \pm}^{(1)}\right\} \sim \lambda^{2}$ match onto O II $\sim \eta$ or higher
SCETI

$$
\begin{gathered}
\lambda^{\delta}=4+4 u+\sum_{k}(k-4) V_{k}^{c}+(k-8) V_{k}^{u} \\
4 u=1 \text { no. } V^{\text {pure soft }} \\
4 u=0
\end{gathered}
$$

SCETI

$$
\begin{aligned}
& \text { loops } \\
& \delta=5-N_{c}-N_{5}+\sum_{k}(k-4)\left(V_{k} S+V_{k}^{c}\right)+(k-3) V_{k}^{5 c}
\end{aligned}
$$

\# connected
soft, collin components
$\left[\begin{array}{c}\left.\text { in eg } \operatorname{sLE} T_{I} \quad \lambda^{3} \lambda \begin{array}{c}\frac{1}{\lambda^{2}} \lambda^{3} \lambda \sim \lambda^{6-4} \sim \lambda^{2} \\ \text { or } \lambda * \lambda \sim \lambda^{2}\end{array} \Rightarrow\left(\eta^{3 / 2} \eta\right)^{2} \frac{1}{3}=\eta^{4-3}=\eta\right]\end{array}\right]$

$$
\begin{aligned}
\mathcal{L}_{\text {SCAT }}^{I}=\mathscr{L}_{\text {soft }}^{(0)}\left[B_{s}, A_{s}\right] & +\mathscr{L}_{\text {collin-n }}^{(0)}\left[\delta_{n}, A_{n}\right] \\
& +\mathcal{L}_{\text {collin- }}^{(0)}\left[\delta_{\bar{n}}, A_{\bar{n}}\right]
\end{aligned}
$$

Non-pert d.o.f in different sectors $B \rightarrow \pi \pi$

Exclusive
eg. $\gamma^{*} \gamma \rightarrow \pi^{0}$ hard -collin factorization
[Breit frons: soft modes have no active role so this does not really prole differana between SCETI \& SCETIII]
QCD has

$$
\begin{aligned}
\left\langle\pi^{0}\left(p_{\pi}\right)\right| J_{\mu}(\theta)\left|\gamma\left(p_{\gamma}, \epsilon\right)\right\rangle & =i e \epsilon^{0} \int d^{4} z e^{-i p_{\gamma}-z}\left\langle\pi^{0}\left(p_{\pi}\right)\right| T J_{\mu}(0) J_{v}(z)|0\rangle \\
& =-i e F_{\pi \gamma}\left(Q^{2}\right) \epsilon_{\mu \nu} \sigma p_{\pi} \epsilon^{e}{ }_{8}^{\sigma}
\end{aligned}
$$

e.m. counts $J^{\mu}=\bar{\Psi} \hat{Q} \gamma^{\mu} \psi, \hat{Q}=\frac{r_{3}}{2}+\frac{1}{6}=\left(\frac{2}{3}-\frac{1}{3}\right)$

For $\mathbb{Q}^{2}>\Lambda^{2} \quad$ Fir simplifies (ala Brodsky-Le, (aye)
frame $q^{\mu}=\frac{Q}{2}\left(n^{\mu}-\bar{n}^{\mu}\right), \quad P_{r}^{\mu}=E \hbar^{\mu}$

$$
P_{\pi}^{\mu}=P+P_{\gamma}=\frac{Q}{2} n^{\mu}+\left(E-\frac{Q}{2}\right) \Pi^{\mu}
$$

SCET Operator at Led \rightarrow ordn (for T-product) is

$$
\theta=\frac{i \epsilon_{\mu \nu}^{\perp}}{Q}\left[\bar{\varphi}_{n, p} \omega\right] \Gamma C\left(\bar{p}, \bar{p}^{+}, \mu\right)\left[\omega^{+} \varphi_{n, p}\right]
$$

order $\lambda^{2} \quad("+$ twist $-2 ")$

- obeys current conservation
- din analysis fixes $\frac{1}{\theta}$ pre-factor for C dines
- Change Conj: $T\{J, J\}$ even so o even so $\quad C\left(\mu, \bar{p}, \bar{p}^{+}\right)=C\left(\mu,-\bar{p}^{+},-\bar{p}\right)$
- flavor \& spin
structure

$$
\Gamma=\underbrace{\lambda \gamma_{5}}_{\substack{\text { for } \\ \text { pion }}} 3 \sqrt{2} \underbrace{\hat{Q}^{2}}_{\substack{\text { nd ord. } \\ \text { em. }}}
$$

- color singlet, purely collinear (again) so soft gluons decouple
equate $\left.\frac{Q^{2}}{2} F_{\pi r}=\frac{i}{Q}<\pi^{\circ}\left|(\bar{q} \omega) \Gamma \subset\left(\omega^{+} \varphi\right)\right| 0\right\rangle$
write $\quad \bar{P}_{ \pm}=\bar{p}^{+} \pm \bar{P}$
now \bar{P}_{-}give total mon of $(\bar{\zeta} \omega) \Gamma\left(\omega^{+} L\right)$ operator ie momaten of pion
(\#) $\bar{p}_{-}=\bar{n} \cdot p_{\pi}=Q$
\rightarrow total mom,

$$
\left.F_{\pi r}\left(Q^{2}\right)=\frac{2 i}{Q^{2}} \int d \omega C(\omega, \mu)<\pi\right)(q \omega) \Gamma \delta\left(\omega-\bar{p}_{+}\right)\left(\omega^{+} \xi\right)|0\rangle
$$

Non-perturbative Matrix EAt finite Wilson line (Peep is $\int_{x}^{y} d s . .$.) position space

Fourier Transform of $\bar{\pi} \cdot p$ label

$$
\begin{aligned}
&\left\langle\pi^{0}(p)\right| \overline{\ln }(y) \vec{x} \gamma_{5} \tau^{3} \omega(y, x) \varphi_{n}(x)|0\rangle \\
& \sqrt{2}=-i f_{\pi} \pi \cdot p \int_{0}^{1} d z e^{i n \cdot p(z y+(1-z) x)} \\
& \int_{0}^{1} d z \varnothing \pi(z)=1
\end{aligned}
$$

momentum space

$$
\begin{aligned}
& \left\langle\Pi^{0}(p)\right|\left(\bar{\zeta}_{n, p} \omega\right) \frac{\not \overline{\gamma_{5}} \tau^{2}}{\sqrt{2}} \delta\left(\omega-\bar{p}_{+}\right)\left(\omega^{+} \varphi_{n, p}\right)|0\rangle \\
& =-i f_{\pi} \bar{n} \cdot p \int_{0}^{1} d z \delta(\omega-(2 z-1) \bar{n} \cdot p) \varnothing \pi(\mu, z)
\end{aligned}
$$

Plug it into $F_{\pi \gamma}\left(Q^{2}\right)$ and do integral over ω

$$
F_{\pi \gamma}\left(Q^{2}\right)=\frac{2 f \pi}{Q^{2}} \int_{0}^{1} d z C((2 z-1) Q, Q, \mu) \varnothing_{\pi}(z, \mu)
$$

- Π_{π} is universal light. cone dist'n for pions
- C is process depend. (all order factorization in α_{s})
- one -din convolution again

Tree Level Match

$$
\begin{aligned}
& \text { expand }
\end{aligned}
$$

$$
\begin{aligned}
& *\left(\frac{1}{\pi^{\prime} \cdot p}-\frac{1}{\bar{n} \cdot p^{\prime}}\right)+\ldots \\
& \text { So } \quad C=\frac{1}{6 \sqrt{2}}\left(\frac{Q}{\bar{P}^{+}}-\frac{Q}{\bar{P}}\right) \\
& C(w=(2 x-1) Q)=\frac{1}{6 \sqrt{2}}\left(\frac{1}{x}+\frac{1}{1-x}\right) \\
& \text { (} 4 \begin{array}{c}
\text { 2 mon-pion } \\
\text { terms } \\
2
\end{array} \\
& \text { with } \omega=1
\end{aligned}
$$

Charge Conj +1 for $\left|\pi^{0}\right\rangle$ give $\phi_{\pi}(x)=\theta_{\pi}(1-x)$
(Hawk.)
So only $\int_{0}^{1} d x \frac{\varnothing_{\pi t}(x, \mu)}{x}$ appears in our prediction
A integrate oven all x, much different them DIS $\delta(1-\xi / x) \Rightarrow f_{i / p}(x, \mu)$

Interpietation:
Naively

nom fraction -b
quarks in pion

Reall

Q mom froctions at point whe guark, are prodveced. Madranization process chages " x " carried by valemee guarks which is encoded in $\nabla_{\pi}(x)$
Highan Orden Motchy
foll

SCET

Differeence will be IR finite, and gives C at ome-loop

Another Exclusive Exrm'e
(hep-ph/0107002)
$B \rightarrow D \pi$
$\underbrace{m_{b}, m_{c}, E_{\pi}}_{Q} \gg$ 人Qco
OCD Operatars at $\mu=\mathrm{mb}$

$$
H_{\omega}=\frac{4 \sigma_{F}}{\sqrt{2}} V_{\text {ud }}{ }^{*} V_{c b} \quad\left[C_{0}{ }^{F} O_{0}+C_{8}{ }^{F} O_{8}\right] p_{p_{2}=\frac{1-\gamma_{5}}{2}}
$$

Whare $O_{0}=\left[\bar{c} \gamma^{\mu} P_{L} b\right]\left[d \gamma_{\mu} P_{L} u\right]$

$$
O_{8}=\left[\bar{c} \gamma^{\mu} P_{L} \tau^{0} b\right]\left[d^{d} \gamma_{L} P_{L}^{a} u\right]
$$

Wont to Factorize $<0 \pi|00,8| \mathrm{B}\rangle$
ie Thow
at 40

no gloons btwn B, D and ouarks in pion

Q expect $B \rightarrow D$ form foctor EIsour-Wise $\theta_{\pi}(x)$ distn for pion
B, D soft
$\pi \quad$ collinear $\left.\begin{array}{ll}p^{2} \sim N^{2} \\ p^{2} \sim N^{2}\end{array}\right\}$ SCET II
Use SCET S intermadeta step
(1). match at $\mu^{2} \simeq Q^{2}$

$$
\begin{aligned}
& \Gamma h^{1,5}=\frac{\not \partial}{2}\left\{1, \gamma_{5}\right\} \\
& 4_{\text {usoft }} \\
& \text { SCETI } \\
& \tau_{\text {collineon }} \\
& P^{2} \sim Q 1
\end{aligned}
$$

(2) Field redefinitions $\quad q_{n, p}=\psi \xi_{n i p}^{(0)}, \ldots$

$$
\begin{aligned}
& \begin{array}{lll}
\text { in } Q_{0}^{1,5} & \text { get } & \bar{q}_{n}^{(0)} \omega^{(0)} y^{t} \not Y^{1,5} \omega^{+(0)} \mathcal{l n}_{n}^{(0)} \\
Q_{8}^{1,5} & \text { get } & \bar{q}_{n}^{(0)} \omega^{(0)} Y^{+} \tau^{A} \Psi \omega^{+(0)} \mathcal{I n}^{(0)}
\end{array} \\
& V_{1} T^{a} Y^{+}=Y^{b a} T^{b} \\
& Y^{+} T^{a} Y=Y^{a b} T^{b}
\end{aligned}
$$

adjoint Wilson line
$T^{a} \otimes Y^{+} T^{a} Y=Y T^{a} Y^{+} \otimes T^{a}$
t moves usoft Wilson lina next to her fields
(3) Match SLETI onto SCETII. (trivial have again)

$$
Y \rightarrow S
$$

$\varphi_{n}^{(0)} \rightarrow$ q$_{n}$ in III...ets.

$$
\begin{aligned}
& Q_{0}^{1,5}=\left[\overline{h u s}_{0}^{(c)} \Gamma_{h} h_{u}^{(b)}\right]\left[\bar{\xi}_{n}^{(d)} \omega r_{A} C_{0}\left(\bar{p}_{+}\right) \omega^{+} \varphi_{n, p}^{(\omega)}\right]
\end{aligned}
$$

(4) Take Matrix Elemats

$$
\begin{aligned}
& \left\langle\pi_{n}\right| \bar{\varphi}_{n} \omega r C_{0}\left(\bar{p}_{+}\right) \omega^{+} \varphi_{n}|0\rangle=\frac{i}{2} f \pi E_{\pi} \int_{0}^{1} d x C\left(2 E_{\pi}(2 x-1)\right) \phi_{\pi}(x) \\
& \left\langle D_{0}\right| \text { ar } \Gamma \text { ho }|B\rangle=N^{\prime} \quad \xi\left(\omega_{0}, \mu\right) \\
& { }^{\uparrow} \omega_{0}=v \cdot \omega^{\prime}
\end{aligned}
$$

B.D purely soft... \rightarrow no contractions with collinear fields π " collinem \rightarrow no ". " soft fields which is why it factors into tues matrix olenat
$F: 08:$

$$
\left\langle D_{r^{\prime}}\right| \underbrace{h_{r^{\prime}} Y T^{a} Y^{+} h_{r r}\left|B_{r}\right\rangle}=0
$$

Find
Factorization Formula

$$
\begin{aligned}
& \langle\pi \rho| H \omega|B\rangle=i N\left(\omega_{0}, \mu\right) \quad \int_{0}^{1} d x C\left(2 E_{\pi}(2 x-1), \mu\right) \varnothing_{\pi}(x, \mu) \\
& 4 \\
& \text { refactors } \\
& +O(\pi / Q)
\end{aligned}
$$

a $\mathcal{L}\left(\omega_{0}, \mu\right)$ is Isgur-wise function at max recoil

$$
\omega_{0}=\frac{m_{B}^{2}-m_{D}^{2}}{2 m_{B}} \quad \text { (messed in } B \rightarrow P_{e} \text { recall) }
$$

- This applies to type-I ($:$ III) decay,

$$
\begin{array}{lll}
\bar{B}^{0} \rightarrow D^{+} \pi^{-} & \bar{B}^{0} \rightarrow D^{*}+\pi^{-}, & \bar{B}^{\circ} \rightarrow D^{+} e^{-}, \ldots \\
B^{-} \rightarrow D^{0} \pi^{-} & B^{-} \rightarrow D^{* 0} \pi^{-} & B^{-} \rightarrow D^{0} e^{-}, \ldots
\end{array}
$$

-predicts type -II de caps are suppressed by $1 / Q$

$$
\bar{B}^{0} \rightarrow D^{0} \pi^{0}, \ldots
$$

we could derive fact. the. for these too)

Arothen inclusive examle. $B \rightarrow x_{s} y$... modes matter -

Here we will reed bath usoft \& collinean d.o.f. in

$$
\text { Heff }=-\frac{-4 G_{F}}{\sqrt{2}} \quad V_{t b} V_{t s}^{*} C_{T} O_{7}, \quad O_{7}=\frac{e}{16 \pi^{2}} m_{b} \bar{S} \sigma^{\mu \nu} F_{\mu \nu} P_{R} b
$$

photon $\quad q^{\mu}=E_{\gamma} \bar{n}^{\mu}$

$$
\begin{aligned}
& \frac{1}{\Gamma_{0}} \frac{d \Gamma}{d E_{\gamma}}=\frac{4 E_{\gamma}}{m_{b}^{3}}\left(-\frac{1}{\pi}\right) I_{m} T \\
& \left.T=\frac{i}{m_{B}} \int d^{4} x e^{-i 8 \cdot x}<\bar{B}\left|T J_{\mu}^{+}(x) J^{\mu}(0)\right| \bar{B}\right\rangle
\end{aligned}
$$

$$
J^{\mu}=\bar{s}^{\mu} i \sigma^{\mu \nu} q_{v} P_{R} b
$$

Consider endpoint region

$$
\begin{aligned}
& M_{B} / 2-E_{\gamma} \leqslant \wedge_{Q C D} \\
& P_{X}^{2}=M_{B} \Lambda
\end{aligned}
$$

B-rest frome $\quad P_{B}=\frac{m B}{2}\left(n^{\mu}+\bar{n} \mu\right)=P_{X}+q$

$$
P_{x}=\frac{m_{B}}{2} n^{\mu}+\frac{\pi^{\mu}}{2} \frac{\left(m_{B}-2 E_{\gamma}\right)}{\Lambda}
$$

collineor
so guarb as glven in X ore collinan with $P_{C}{ }^{2} \sim M_{B} \wedge$ B has usoft light diof.
match onto LO SCET operator
边 10

$$
J_{\mu}=-E_{\gamma} e^{i\left(\bar{p}_{\frac{n}{2}}-m_{b} v\right) \cdot x} \bar{\xi} \omega \gamma_{\mu}^{+} p_{L} h_{\sigma} C\left(\bar{p}^{+}, \mu\right)
$$

i our hears-to-light
current from easier

$$
\equiv J_{\text {eff }}^{\mu}
$$

The coefficient $C\left(\bar{p}^{+}\right)$hoo $\bar{p}^{+}=m b$ since this is total moventer of s-quark jet in $\bar{\pi} \cdot P_{x}$

Factor with Field redefn

$$
=i \int d^{4} x e^{i()}\langle\bar{B}| T\left(\bar{h}_{\sigma} Y\right)(x)\left(Y h_{\sigma}\right)(0)|\bar{B}\rangle
$$

$$
*\langle 0| T\left(\omega^{+(0)} \varphi^{(0)}\right)(x)\left(\bar{q}^{(0)} \omega\right)(0)|0\rangle
$$

a spin $\$$ color indices \& structures $\gamma_{\mu}{ }^{+} P_{L}$ suppressed

$$
\begin{gathered}
=\frac{1}{2} \int d^{4} x \int \Phi^{4} k e^{i\left(m_{b} \frac{\pi}{2}-\xi-k\right) \cdot x}\langle\bar{B}| T\left(\bar{h}_{r} y\right)(x)\left(y^{+} h_{r}\right)(0)|\bar{B}\rangle \\
* \quad J_{p}(k)
\end{gathered}
$$

$$
* \quad J_{p}(k)
$$

$$
\langle 0| T\left(\omega^{+} Y\right)(\bar{Y} \omega)|0\rangle=i \quad \int f^{4} h e^{-i h \cdot x} J_{p}(k) \frac{\bar{\gamma}}{2}
$$

in Toff we then get
only depend on k^{+}! so do $k-h^{+}$integral

$$
\begin{aligned}
&-S\left(e^{+}\right)=\frac{1}{2} \int \frac{2 x^{-}}{4 \pi} e^{-i / 2 e^{+} x^{-}}\langle\bar{B}| T\left[\bar{h}_{\sigma} Y\right)\left(\frac{n}{2} x^{-}\right)\left(Y^{+} h_{\sigma}\right)(0)|\bar{B}\rangle \\
& 4 y\left(\frac{n}{2} x^{-}, 0\right)
\end{aligned}
$$

match onto LO SCET operator
边 10

$$
J_{\mu}=-E_{\gamma} e^{i\left(\bar{p}_{\frac{n}{2}}-m_{b} v\right) \cdot x} \bar{\xi} \omega \gamma_{\mu}^{+} p_{L} h_{\sigma} C\left(\bar{p}^{+}, \mu\right)
$$

i our hears-to-light
current from easier

$$
\equiv J_{\text {eff }}^{\mu}
$$

The coefficient $C\left(\bar{p}^{+}\right)$hoo $\bar{p}^{+}=m b$ since this is total moventer of s-quark jet in $\bar{\pi} \cdot P_{x}$

Factor with Field redefn

$$
=i \int d^{4} x e^{i()}\langle\bar{B}| T\left(\bar{h}_{\sigma} Y\right)(x)\left(Y h_{\sigma}\right)(0)|\bar{B}\rangle
$$

$$
*\langle 0| T\left(\omega^{+(0)} \varphi^{(0)}\right)(x)\left(\bar{q}^{(0)} \omega\right)(0)|0\rangle
$$

a spin $\$$ color indices \& structures $\gamma_{\mu}{ }^{+} P_{L}$ suppressed

$$
\begin{gathered}
=\frac{1}{2} \int d^{4} x \int \Phi^{4} k e^{i\left(m_{b} \frac{\pi}{2}-\xi-k\right) \cdot x}\langle\bar{B}| T\left(\bar{h}_{r} y\right)(x)\left(y^{+} h_{r}\right)(0)|\bar{B}\rangle \\
* \quad J_{p}(k)
\end{gathered}
$$

$$
* \quad J_{p}(k)
$$

$$
\langle 0| T\left(\omega^{+} Y\right)(\bar{Y} \omega)|0\rangle=i \quad \int f^{4} h e^{-i h \cdot x} J_{p}(k) \frac{\bar{\gamma}}{2}
$$

in Toff we then get
only depend on k^{+}! so do $k-h^{+}$integral

$$
\begin{aligned}
&-S\left(e^{+}\right)=\frac{1}{2} \int \frac{2 x^{-}}{4 \pi} e^{-i / 2 e^{+} x^{-}}\langle\bar{B}| T\left[\bar{h}_{\sigma} Y\right)\left(\frac{n}{2} x^{-}\right)\left(Y^{+} h_{\sigma}\right)(0)|\bar{B}\rangle \\
& 4 y\left(\frac{n}{2} x^{-}, 0\right)
\end{aligned}
$$

imaginal pout is in jet function let $J\left(k^{+}\right)=-\frac{1}{\pi} \operatorname{Im} J_{\rho}\left(k^{+}\right)$

All ordn's foctorization

$$
\frac{1}{\Gamma_{0}} \frac{d r}{d E r}=N C(m b, \mu) \int_{2 E_{\gamma} m_{b}}^{\pi} d l^{+} s\left(l^{+}\right) J\left(l^{+}+m_{b}-2 E \gamma\right)
$$

个
stope function is seen in the data

Final example
two - jet production

How do we define a jet?

Consider $e^{+} e^{-} \rightarrow 8 \overline{8} g$

$$
\begin{aligned}
q & =p_{1}+p_{2}+p_{3} \\
2 & =x_{1}+x_{2}+x_{3}
\end{aligned}
$$

for $\quad x_{i}=\frac{2 p_{i} \cdot q}{q^{2}}$

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d x_{1} d x_{2}}=\frac{C_{F} \alpha_{s}}{2 \pi} \quad \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Two jets along edges -Three jets in middle

$$
\begin{aligned}
& q \sim n_{1} \\
& \bar{q} \sim n_{2} \\
& g \sim n_{3}
\end{aligned}
$$

give

Sterman-Weiabery Definition of 2 -jets if gluon has $\rho_{3}{ }^{\circ}<\in Q$ or
if gluon has angle $\cos \theta_{13}>1-2 \delta^{2}$ or $\cos \theta_{23}>1-2 \delta^{2}$

$$
\begin{aligned}
& \left.\frac{d \sigma}{d e}=\frac{1}{2 Q^{2}} \sum_{N}\left|\langle N\rangle J_{\alpha}^{\mu}(0)\right| 0\right\rangle\left. L_{\mu}\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(q-\sum P_{N}\right) \delta(e-e(N)) \\
& 7 \\
& \text { event scope variable }
\end{aligned}
$$

eg jet energy $\quad E_{J}=\sum_{i \text { in }} E_{i}$
eg. Thrust $T=\max _{\hat{t}} \sum_{i=N}\left|\vec{p}_{i} \cdot \hat{t}\right| / \sum_{i=1}\left|\vec{p}_{i}\right|$
$\frac{\text { Two -jets }\left(S C E T_{I}\right)}{\text { Fr } 4 \rightarrow\left(\bar{\varphi}_{n} \omega_{n}\right)} \gamma_{\perp}^{\mu} C\left(\bar{P}, \bar{P}^{+}, \mu\right)\left(\omega_{n}^{+} \varphi_{n}\right)=J_{S C E T}^{\mu}$ matching ensures only 2 -jets

Decouple U-soft

$$
\begin{array}{lll}
& \varphi_{n} \rightarrow Y_{n} \varphi_{n}^{(0)} & \varphi_{n}=\bar{p} \exp \\
\zeta_{n} \rightarrow Y_{\bar{n}} \xi_{n}^{(0)} & & \\
J^{\mu}= & \left(\zeta_{n} \omega_{n} Y_{n}^{+}\right) \gamma_{\perp}^{\mu} C\left(Y_{n} \omega_{n}^{+} \varphi_{n}\right)
\end{array}
$$

State: $|N\rangle=\left|X_{n} X_{\bar{A}} x_{u}\right\rangle \quad a^{\prime l}+$ the soft partiont
Q we will not botha to observe this jet, eN) indep of it.
Schematically

$$
\begin{aligned}
\sum_{x_{n} X_{n}, X_{u}} & \underbrace{\delta^{(u)}\left(p_{n}-\sum p_{x_{n}}^{i}\right)} \underbrace{\delta d^{4} x e^{i x \cdot\left(p_{n}-\sum p_{x_{n}}^{i}\right)}} \underbrace{\delta^{(4)}\left(p_{n}-\sum p_{x_{n}^{i}}^{i}\right)}\left\langle d^{4} y e^{i y \cdot\left(p_{n}-\sum p_{n}^{i}\right)}\right.
\end{aligned}\left\langle J_{(0)}^{\mu} \mid X_{n} X_{n}-X_{u}\right\rangle\left\langle X_{u} X_{n} X_{n}\right| J_{(0)}^{\mu}|0\rangle
$$

Q recall $P_{n}^{+} \sim P_{5}^{-} \sim$ soft momentum.

$$
\left(\sum_{n} \omega_{n} Y_{n}^{+}\right)_{P_{n}^{-}}(y) \gamma_{\perp}^{\mu}\left(Y_{n} \omega_{n}^{+} Y_{n}^{-}\right)(x) \quad, \ldots
$$

4
No Time for this
In lecture I defined what a jet is in terms of operators and discussed how it relates to our example of a jet in $b-38$ gamma.

