Massachusetts Institute of Technology
 Department of Physics

Physics 8.942
Fall 2001

Problem Set \#1

Due in class Tuesday, September 18, 2001.

1. Conserved Momenta

Show the following: If $\partial_{\alpha} g_{\mu \nu}=0$ for all $\{\mu, \nu\}$, then P_{α} is conserved along a geodesic $x^{\mu}(\lambda)$, where $P_{\alpha} \equiv g_{\alpha \beta} d x^{\beta} / d \lambda$.

2. Robertson-Walker Metric

Consider the general Robertson-Walker metric, written in the form

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] . \tag{i}
\end{equation*}
$$

Note that for $k>0$ the complete spacetime has two copies of the domain $0 \leq r \leq k^{-1 / 2}$, just as a unit sphere has two copies of the cylindrical coordinate range $0 \leq \sqrt{x^{2}+y^{2}} \leq 1$ (the northern and southern hemispheres).

Find coordinate transformations that will put the line element in the following forms:

$$
\begin{gather*}
d s^{2}=a^{2}(\tau)\left[-d \tau^{2}+d \chi^{2}+r^{2}(\chi)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{ii}\\
d s^{2}=a^{2}(\tau)\left[-d \tau^{2}+\frac{d \bar{r}^{2}+\bar{r}^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)}{\left(1+\frac{1}{4} k \bar{r}^{2}\right)^{2}}\right], \tag{iii}\\
d s^{2}=-d t^{2}+a^{2}(t)\left[1+\frac{k}{4}\left(x^{2}+y^{2}+z^{2}\right)\right]^{-2}\left(d x^{2}+d y^{2}+d z^{2}\right) . \tag{iv}
\end{gather*}
$$

For each case, indicate the full range of the variables. Give explicit formulae for $r(\chi)$ and $\bar{r}(r)$. (Hint: Different forms may be required for $k>0, k<0$, and $k=0$. Note also that $a(\tau)$ is not the same function of its argument as $a(t)$.)

3. Cosmological and Doppler Redshifts

Consider an object with radial coordinate χ_{e} in a Robertson-Walker spacetime (using the form ii given in Problem 2). The object emits a burst of nearly monochromatic radiation at time τ_{e} with wavelength λ_{e} in its own rest frame. A fundamental (comoving) observer is at $\chi=0$ with 4 -velocity $\vec{V}_{o}=a^{-1} \vec{e}_{\tau}$. The observer detects the radiation at time τ_{o} with wavelength λ_{o}. The redshift is defined as $z \equiv\left(\lambda_{o} / \lambda_{e}\right)-1$.
a) Assume that the emitter is comoving (i.e. at fixed spatial coordinates) so that its four-velocity is $\vec{V}_{e}=a_{e}^{-1} \vec{e}_{\tau}$ where $a_{e} \equiv a\left(\tau_{e}\right)$. Evaluate the redshift in terms of the expansion scale factor $a(\tau)$.
b) Now suppose that the emitter is no longer comoving. Instead, it has a radial "peculiar" velocity component v_{r}, which is the radial three-velocity measured by a comoving observer at χ_{e}. (In other words, v_{r} is the radial velocity component in an orthonormal basis fixed at χ_{e}.) What are the emitter's four-velocity components V_{e}^{τ} and V_{e}^{χ} in terms of v_{r} and a_{e} ? Show that your result makes sense in the non-cosmological limit $a(\tau)=$ constant. (Do not assume $v_{r}^{2} \ll 1$.)
c) Continuing part b), what is the object's redshift as seen by the observer? Show that if $a(\tau)=$ constant, you recover the radial Doppler shift formula of special relativity while if $v_{r}=0$ you recover part a).
d) Now suppose that the emitter also has a tangential velocity (relative to the comoving frame) with orthonormal components v_{θ} and v_{ϕ}, i.e. the peculiar velocity has arbitrary direction. Show that the redshift is given by

$$
1+z=\frac{a_{o}}{a_{e}} \frac{1+v_{r}}{\sqrt{1-v^{2}}}
$$

e) (Bonus challenge): Suppose that the observer at $\chi=0$ is no longer comoving but has a three-velocity \underline{v}_{o} relative to the comoving frame. How is $1+z$ modified from part d)?

4. An Empty Universe

For a $k=-1$ Robertson-Walker spacetime with $\rho=p=0$ show from the Friedmann and energy conservation equations that the line element becomes

$$
d s^{2}=-d t^{2}+t^{2}\left[d \chi^{2}+\sinh ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

Find an explicit coordinate transformation to show that this metric describes Minkowski spacetime.

