Physics 8.942

Fall 2001

Problem Set #1 Due in class Tuesday, September 18, 2001.

1. Conserved Momenta

Show the following: If $\partial_{\alpha}g_{\mu\nu} = 0$ for all $\{\mu, \nu\}$, then P_{α} is conserved along a geodesic $x^{\mu}(\lambda)$, where $P_{\alpha} \equiv g_{\alpha\beta}dx^{\beta}/d\lambda$.

2. Robertson-Walker Metric

Consider the general Robertson-Walker metric, written in the form

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right] .$$
 (i)

Note that for k > 0 the complete spacetime has two copies of the domain $0 \le r \le k^{-1/2}$, just as a unit sphere has two copies of the cylindrical coordinate range $0 \le \sqrt{x^2 + y^2} \le 1$ (the northern and southern hemispheres).

Find coordinate transformations that will put the line element in the following forms:

$$ds^{2} = a^{2}(\tau) \left[-d\tau^{2} + d\chi^{2} + r^{2}(\chi)(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right] , \qquad (ii)$$

$$ds^{2} = a^{2}(\tau) \left[-d\tau^{2} + \frac{d\bar{r}^{2} + \bar{r}^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})}{\left(1 + \frac{1}{4}k\bar{r}^{2}\right)^{2}} \right] , \qquad (\text{iii})$$

$$ds^{2} = -dt^{2} + a^{2}(t) \left[1 + \frac{k}{4} \left(x^{2} + y^{2} + z^{2} \right) \right]^{-2} \left(dx^{2} + dy^{2} + dz^{2} \right) .$$
 (iv)

For each case, indicate the full range of the variables. Give explicit formulae for $r(\chi)$ and $\bar{r}(r)$. (Hint: Different forms may be required for k > 0, k < 0, and k = 0. Note also that $a(\tau)$ is not the same function of its argument as a(t).)

3. Cosmological and Doppler Redshifts

Consider an object with radial coordinate χ_e in a Robertson-Walker spacetime (using the form ii given in Problem 2). The object emits a burst of nearly monochromatic radiation at time τ_e with wavelength λ_e in its own rest frame. A fundamental (comoving) observer is at $\chi = 0$ with 4-velocity $\vec{V_o} = a^{-1}\vec{e_{\tau}}$. The observer detects the radiation at time τ_o with wavelength λ_o . The redshift is defined as $z \equiv (\lambda_o/\lambda_e) - 1$.

- a) Assume that the emitter is comoving (i.e. at fixed spatial coordinates) so that its four-velocity is $\vec{V}_e = a_e^{-1} \vec{e}_{\tau}$ where $a_e \equiv a(\tau_e)$. Evaluate the redshift in terms of the expansion scale factor $a(\tau)$.
- b) Now suppose that the emitter is no longer comoving. Instead, it has a radial "peculiar" velocity component v_r , which is the radial three-velocity measured by a *comoving observer at* χ_e . (In other words, v_r is the radial velocity component in an orthonormal basis fixed at χ_e .) What are the emitter's four-velocity components V_e^{τ} and V_e^{χ} in terms of v_r and a_e ? Show that your result makes sense in the non-cosmological limit $a(\tau) = \text{constant}$. (Do not assume $v_r^2 \ll 1$.)
- c) Continuing part b), what is the object's redshift as seen by the observer? Show that if $a(\tau) = \text{constant}$, you recover the radial Doppler shift formula of special relativity while if $v_r = 0$ you recover part a).
- d) Now suppose that the emitter also has a tangential velocity (relative to the comoving frame) with orthonormal components v_{θ} and v_{ϕ} , i.e. the peculiar velocity has arbitrary direction. Show that the redshift is given by

$$1 + z = \frac{a_o}{a_e} \frac{1 + v_r}{\sqrt{1 - v^2}} \; .$$

e) (Bonus challenge): Suppose that the observer at $\chi = 0$ is no longer comoving but has a three-velocity \underline{v}_o relative to the comoving frame. How is 1 + zmodified from part d)?

4. An Empty Universe

For a k = -1 Robertson-Walker spacetime with $\rho = p = 0$ show from the Friedmann and energy conservation equations that the line element becomes

$$ds^{2} = -dt^{2} + t^{2} \left[d\chi^{2} + \sinh^{2} \chi \left(d\theta^{2} + \sin^{2} \theta \, d\phi^{2} \right) \right]$$

Find an explicit coordinate transformation to show that this metric describes Minkowski spacetime.