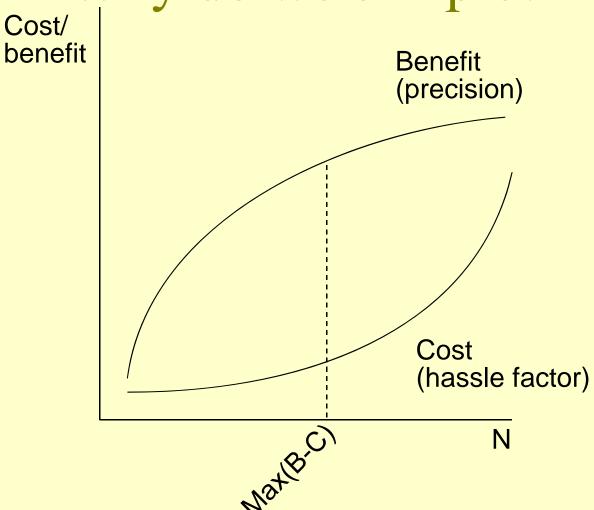
Sampling and Inference

The Quality of Data and Measures

2012

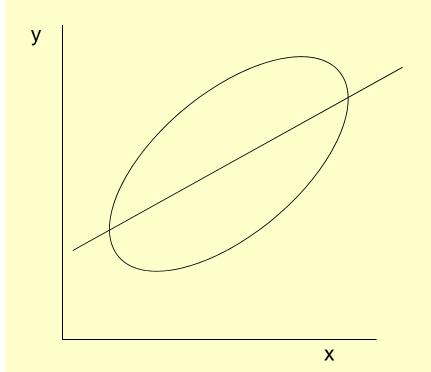
Why do we sample?

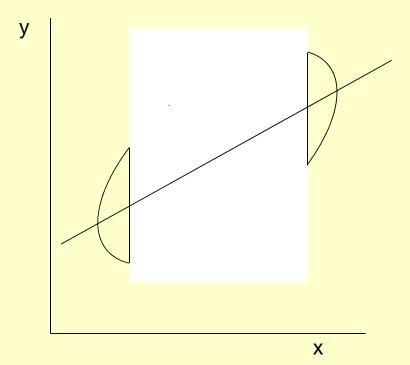


Effects of samples

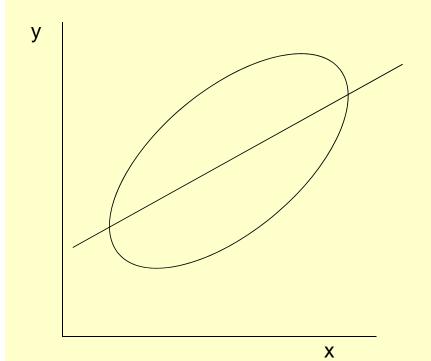
- Obvious: influences marginals
- Less obvious
 - Allows effective use of time and effort
 Effect on multivariate techniques
 - Sampling of independent variable: greater precision in regression estimates
 - Sampling on dependent variable: bias

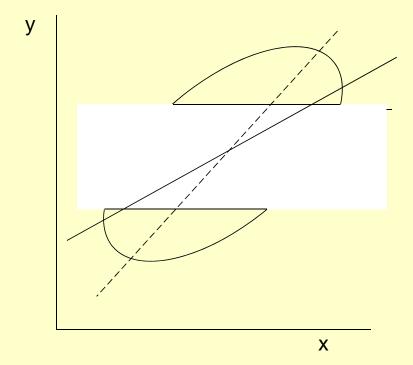
Sampling on Independent Variable





Sampling on Dependent Variable





Sampling

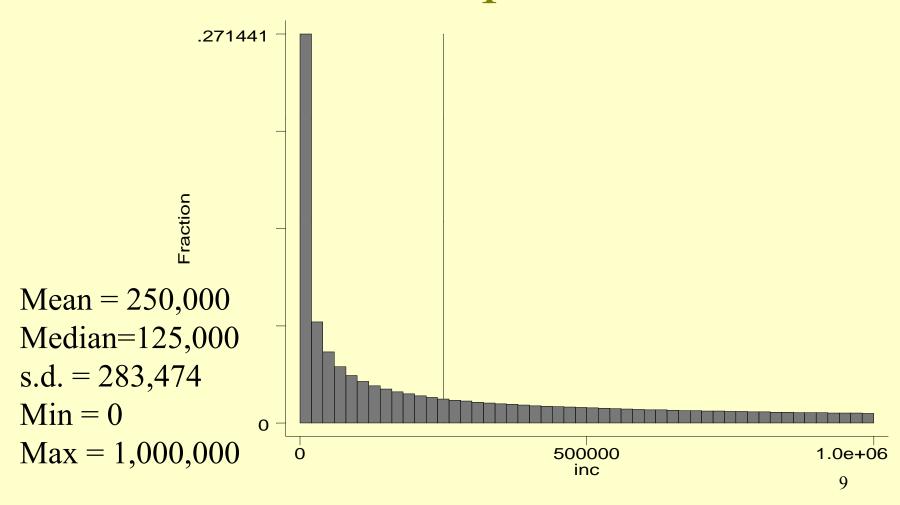
Consequences for Statistical Inference

Statistical Inference: Learning About the Unknown From the Known

- Reasoning forward: distributions of sample means, when the population mean, s.d., and *n* are known.
- Reasoning backward: learning about the population mean when only the sample, s.d., and *n* are known

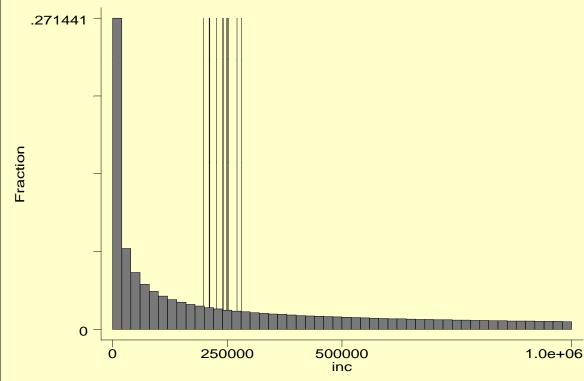
Reasoning Forward

Exponential Distribution Example



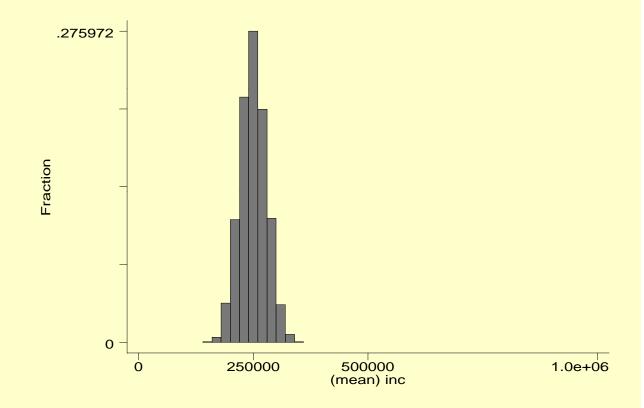
Consider 10 random samples, of n = 100 apiece

Sample	mean			
1	253,396.9			
2	198.789.6			
3	271,074.2			
4	238,928.7			
5	280,657.3			
6	241,369.8			
7	249,036.7			
8	226,422.7			
9	210,593.4			
10	212,137.3			

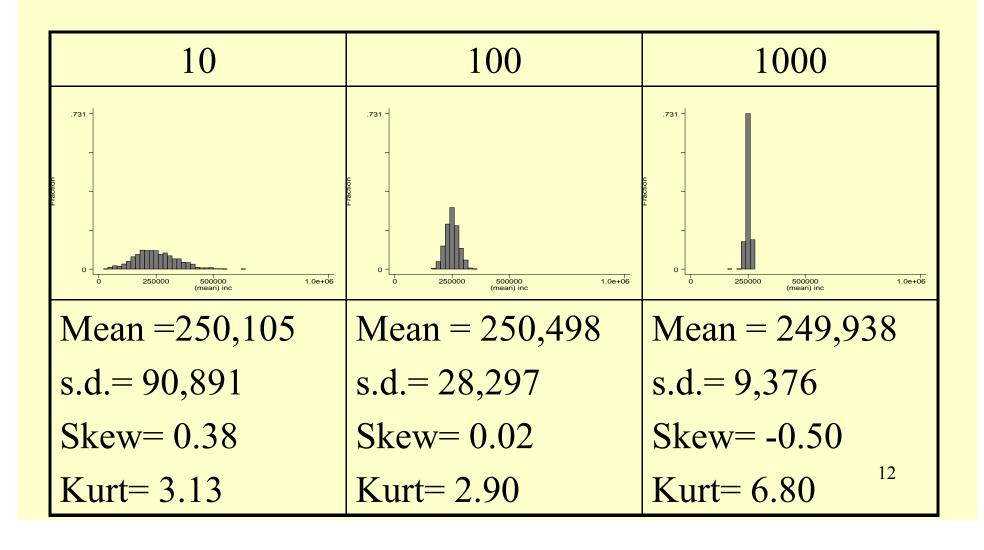


Consider 10,000 samples of n = 100

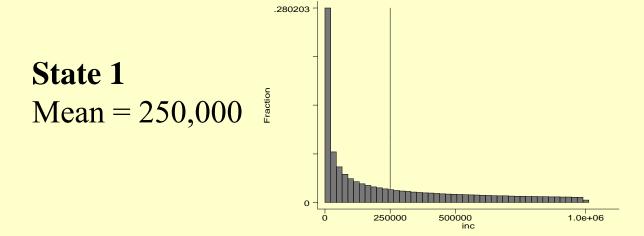
N = 10,000 Mean = 249,993 s.d. = 28,559 Skewness = 0.060 Kurtosis = 2.92

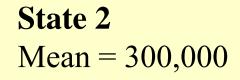


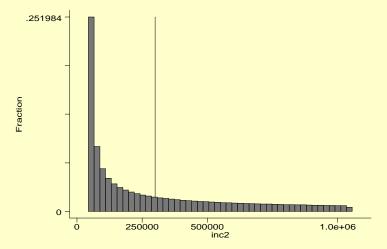
Consider 1,000 samples of various sizes



Difference of means example



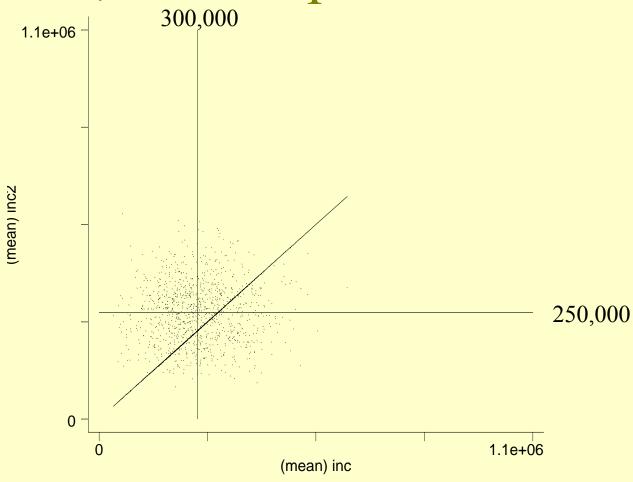




Take 1,000 samples of 10, of each state, and compare them

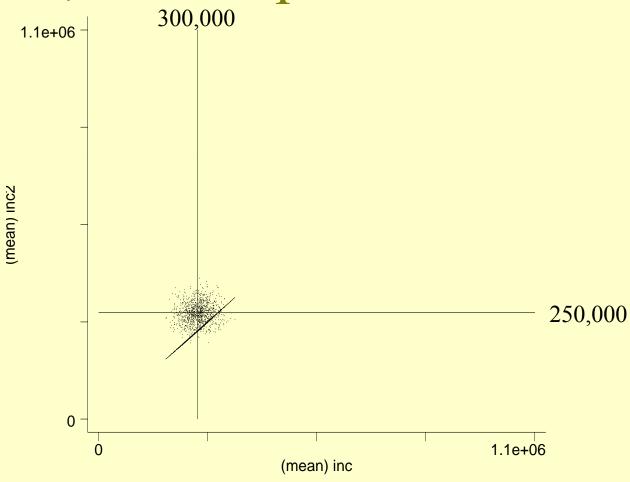
First 10 samples							
Sample	State 1		State 2				
1	311,410	<	365,224				
2	184,571	<	243,062				
3	468,574	^	438,336				
4	253,374	<	557,909				
5	220,934	>	189,674				
6	270,400	<	284,309				
7	127,115	<	210,970				
8	253,885	<	333,208				
9	152,678	<	314,882				
10	222,725	>	152,312				

1,000 samples of 10



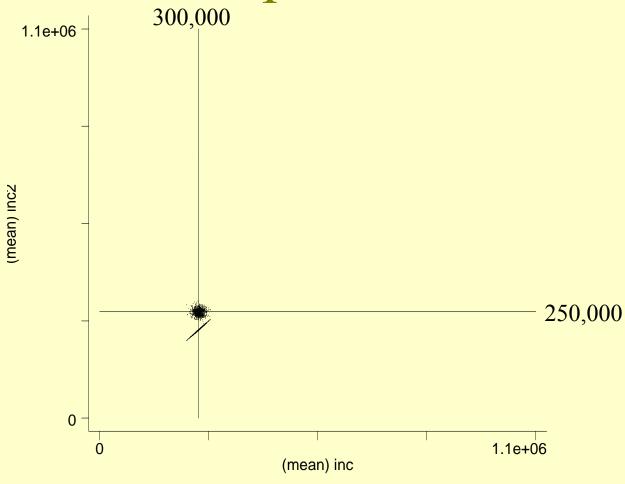
State 2 > State 1: 673 times

1,000 samples of 100



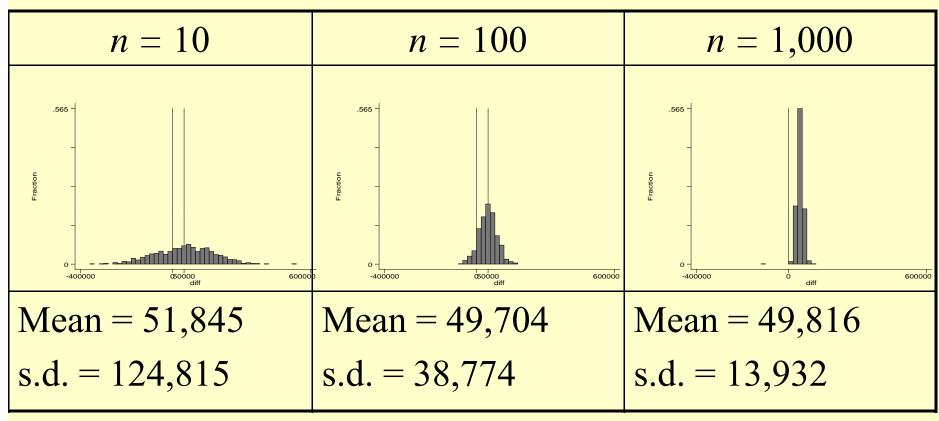
State 2 > State 1: 909 times

1,000 samples of 1,000



State 2 > State 1: 1,000 times

Another way of looking at it: The distribution of $Inc_2 - Inc_1$



Play with some simulations

 http://onlinestatbook.com/stat_sim/sampling dist/index.html

Reasoning Backward

When you know n, \overline{X} , and s, but want to say something about μ

Central Limit Theorem

As the sample size n increases, the distribution of the mean \overline{X} of a random sample taken from **practically any population** approaches a *normal* distribution, with mean μ and standard deviation $\sqrt[\sigma]{n}$

Calculating Standard Errors

In general:

std. err. =
$$\frac{s}{\sqrt{n}}$$

Most important standard errors

Mean	$\frac{s}{\sqrt{n}}$
Proportion	$\sqrt{\frac{p(1-p)}{n}}$
Diff. of 2 means	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Diff. of 2	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
proportions	
Diff of 2 means (paired data)	$\frac{S_d}{\sqrt{n}}$
Regression (slope) coeff.	$\frac{s.e.r.}{\sqrt{n-1}} \times \frac{1}{s_x}$

Using Standard Errors, we can construct "confidence intervals"

• Confidence interval (ci): an interval between two numbers, where there is a certain specified level of confidence that a population parameter lies

ci = sample parameter <u>+</u>
 multiple * sample standard error

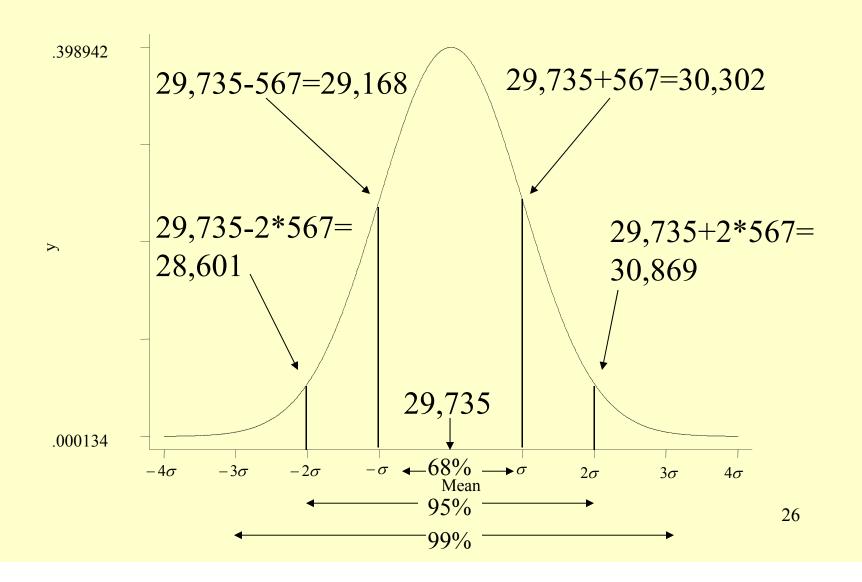
Constructing Confidence Intervals

- Let's say we draw a sample of tuitions from 15 private universities. Can we estimate what the average of all private university tuitions is?
- N = 15
- Average = 29,735
- S.d. = 2,196

• S.e. =
$$\frac{s}{\sqrt{n}} = \frac{2,196}{\sqrt{15}} = 567$$

N = 15; avg. = 29,735; s.d. = 2,196; s.e. = $s/\sqrt{n} = 567$

The Picture



Confidence Intervals for Tuition Example

- 68% confidence interval = 29,735±567 = [29,168 to 30,302]
- 95% confidence interval = 29,735±2*567 = [28,601 to 30,869]
- 99% confidence interval = 29,735±3*567 = [28,034 to 31,436]

What if someone (ahead of time) had said, "I think the average tuition of major research universities is \$25k"?

- Note that \$25,000 is well out of the 99% confidence interval, [28,034 to 31,436]
- Q: How far away is the \$25k estimate from the sample mean?
 - A: Do it in z-scores: (29,735-25,000)/567 = 8.35

Constructing confidence intervals of proportions

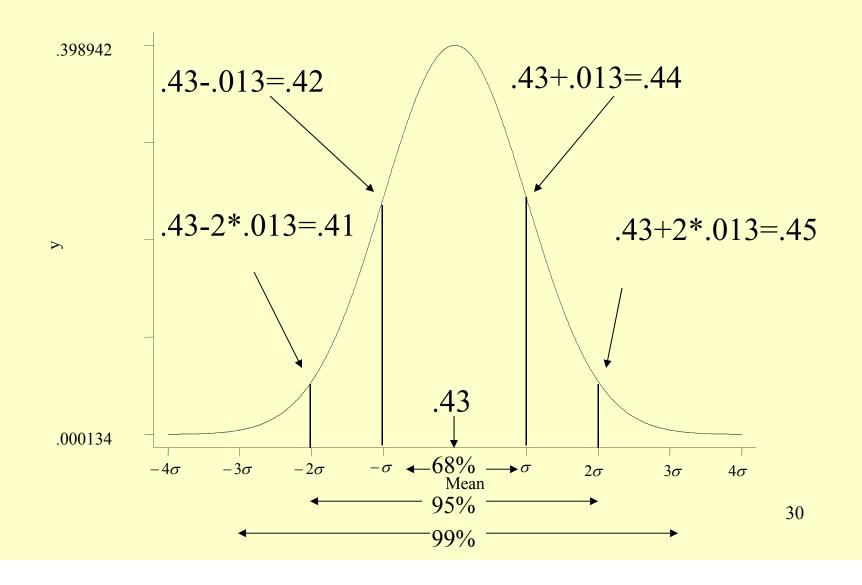
- Let us say we drew a sample of 1,500 adults and asked them if they approved of the way Barack Obama was handling his job as president. (March 23-25, 2012 Gallup Poll) Can we estimate the % of all American adults who approve?
- N = 1500
- p = .43

• s.e.
$$= \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{.43(1-.43)}{1500}} = 0.013$$

http://www.gallup.com/poll/113980/gallup-daily-obama-job-approval.aspx

N = 1,500; p. = .43; s.e. =
$$\sqrt{p(1-p)/n}$$
 = .013

The Picture



Confidence Intervals for Obama approval example

- 68% confidence interval = .43±.013 = [.42 to .44]
- 95% confidence interval = .43±2*.013 = [.40 to .46]
- 99% confidence interval = .43±3*.013 = [.39 to .47]

What if someone (ahead of time) had said, "I think Americans are equally divided in how they think about Obama."

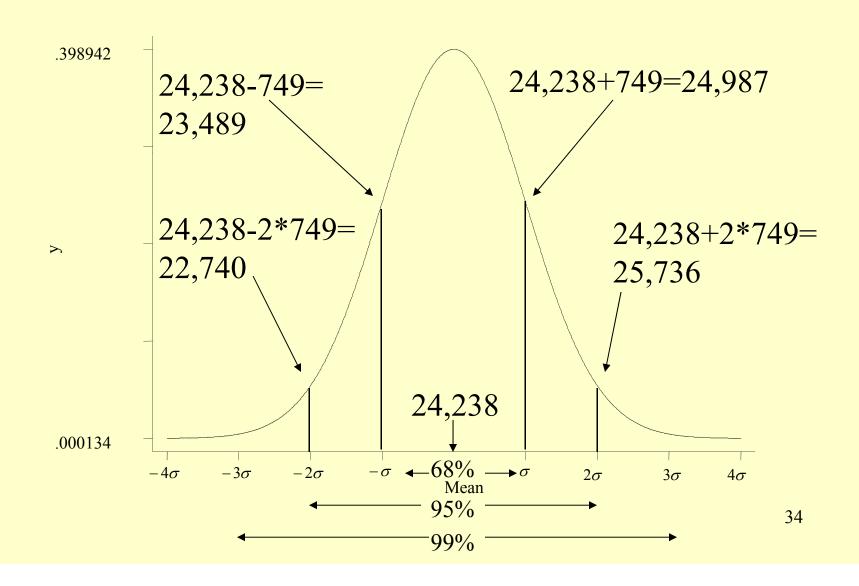
- Note that 50% is well out of the 99% confidence interval, [39% to 47%]
- Q: How far away is the 50% estimate from the sample proportion?
 - A: Do it in z-scores: (.43-.5)/.013 = -5.3

Constructing confidence intervals of differences of means

- Let's say we draw a sample of tuitions from 15 private and public universities. Can we estimate what the difference in average tuitions is between the two types of universities?
- N = 15 in both cases
- Average 29,735 (private); 5,498 (public); diff 24,238
- s.d. = 2,196 (private); 1,894 (public)

• s.e. =
$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{4,822,416}{15} + \frac{3,587,236}{15}} = 749$$

The Picture



Confidence Intervals for difference of tuition means example

- 68% confidence interval = 24,238<u>+</u>749 = [23,489 to 24,987]
- 95% confidence interval = 24,238±2*749 = [22,740 to 25,736]
- 99% confidence interval =24,238+3*749 =
- [21,991 to 26,485]

What if someone (ahead of time) had said, "Private universities are no more expensive than public universities"

- Note that \$0 is well out of the 99% confidence interval, [\$21,991 to \$26,485]
- Q: How far away is the \$0 estimate from the sample proportion?
 - A: Do it in z-scores: (24,238-0)/749 = 32.4

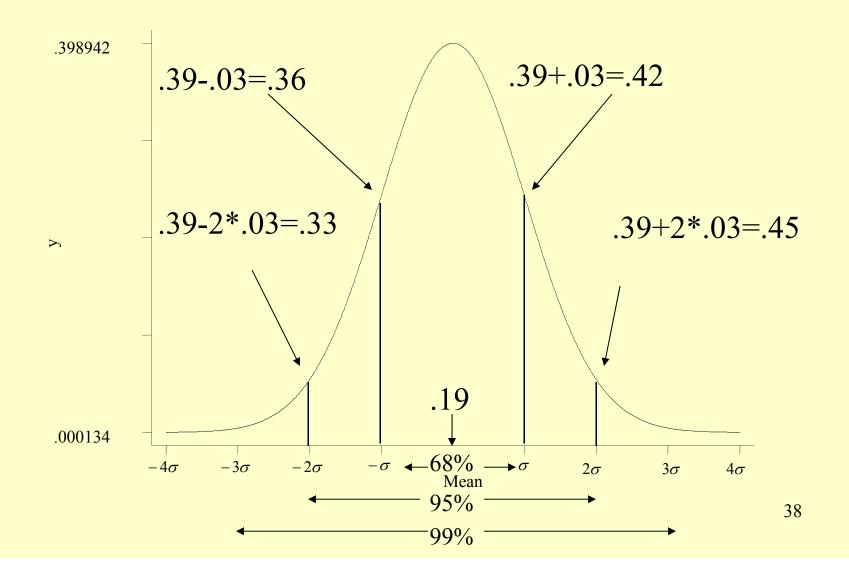
Constructing confidence intervals of difference of proportions

- Let us say we drew a sample of 1,500 adults and asked them if they approved of the way Barack Obama was handling his job as president. (March 23-25, 2012 Gallup Poll). We focus on the 1000 who are either independents or Democrats. Can we estimate whether independents and Democrats view Obama differently?
- N = 600 ind; 400 Dem.
- p = .43 (ind.); .82 (Dem.); diff = .39

• s.e. =
$$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}} = \sqrt{\frac{.43(1-.43)}{600} + \frac{.82(1-.82)}{400}} = .03$$

diff. p. = .39; s.e. = .03

The Picture



Confidence Intervals for Obama Ind/Dem approval example

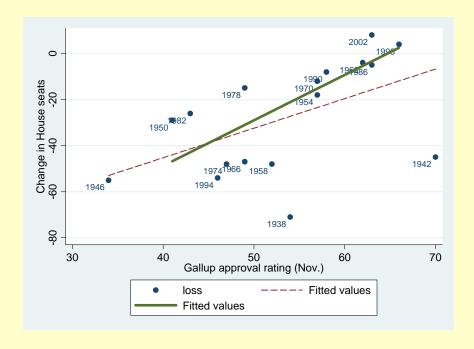
- 68% confidence interval = $.39\pm.03$ =
- [.36 to .42]
- 95% confidence interval = $.39\pm2*.03$ =
- [.33 to .45]
- 99% confidence interval = $.39\pm3*.03$ =
- [.30 to .48]

What if someone (ahead of time) had said, "I think Democrats and Independents are equally unsupportive of Obama"?

- Note that 0% is well out of the 99% confidence interval, [30% to 48%]
- Q: How far away is the 0% estimate from the sample proportion?
 - A: Do it in z-scores: (.39-0)/.03 = 13

Constructing confidence intervals of regression coefficients

• Let's look at the relationship between the midterm seat loss by the President's party at midterm and the President's Gallup poll rating



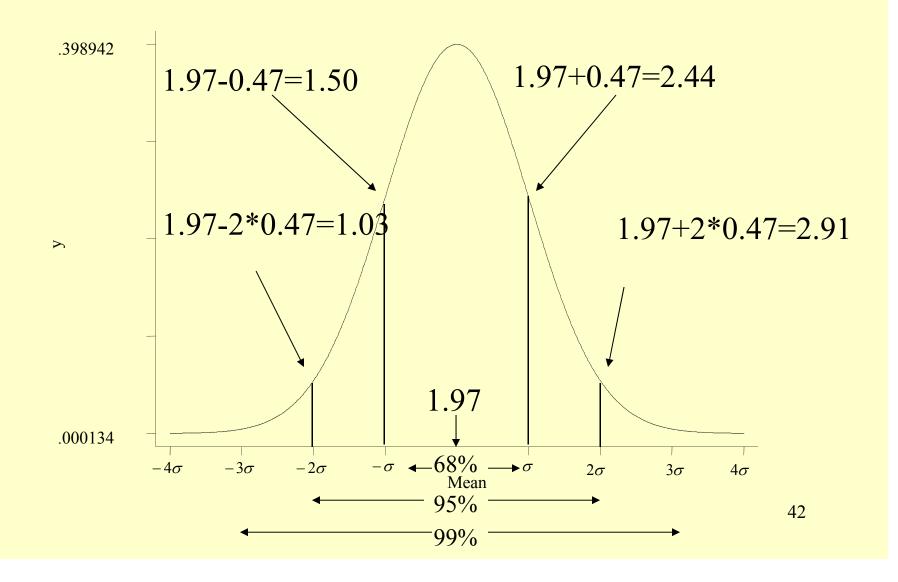
Slope = 1.97
N = 14
s.e.r. = 13.8

$$s_x = 8.14$$

s.e._{slope} =
$$\frac{s.e.r.}{\sqrt{n-1}} \times \frac{1}{s_x} = \frac{13.8}{\sqrt{13}} \times \frac{1}{8.14} = 0.47$$

N = 14; slope=1.97; s.e. = 0.45

The Picture



Confidence Intervals for regression example

- 68% confidence interval = 1.97<u>+</u> 0.47= [1.50 to 2.44]
- 95% confidence interval = 1.97± 2*0.47 = [1.03 to 2.91]
- 99% confidence interval = 1.97±3*0.47 = [0.62 to 3.32]

What if someone (ahead of time) had said, "There is no relationship between the president's popularity and how his party's House members do at midterm"?

- Note that 0 is well out of the 99% confidence interval, [0.62 to 3.32]
- Q: How far away is the 0 estimate from the sample proportion?
 - A: Do it in z-scores: (1.97-0)/0.47 = 4.19

The Stata output

. reg loss gallup if year>1948

Source	ss	đ£	MS		Number of obs	
Model Residual	3332.58872 2280.83985	12 19	332.58872 90.069988		F(1, 12) Prob > F R-squared Adj R-squared	= 0.0013 = 0.5937 = 0.5598
Total	5613.42857	13 43	31.802198		Root MSE	= 13.787
loss	Coef.	Std. Eri	. t	P> t	[95% Conf.	Interval]
gallup _cons	1.96812 -127.4281	.4700211 25.54753		0.001	.9440315 -183.0914	2.992208 -71.76486

MIT OpenCourseWare http://ocw.mit.edu

17.871 Political Science Laboratory Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.