Problem Set 4 Solution

17.872 TA Jiyoon Kim

October 25, 2003
Bulmer Problem 3.1 Since x is uniformly distributed, you can have the distribution function of x. (Uniform distribution between $[\mathrm{a}, \mathrm{b}]$ is $\frac{1}{b-a}$.)

$$
X \sim U[0,1] \text { then, } f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Then, what is $G(y)$ and $g(y)$?
(a) $y=x^{2}$

According to the rule demonstrated in the book,

$$
\begin{aligned}
& G(y)= \operatorname{Pr}[Y \leq y]=\operatorname{Pr}\left[x^{2} \leq y\right] \\
&= \operatorname{Pr}[-\sqrt{y} \leq x \leq \sqrt{y}] \\
&= \operatorname{Pr}[-\sqrt{y} \leq x \leq 0]+\operatorname{Pr}[0 \leq x \leq \sqrt{y}] \\
&= \operatorname{Pr}[0 \leq x \leq \sqrt{y}] \leftarrow \text { because } x \text { is between } 0 \text { and } 1 \\
&= \int_{0}^{\sqrt{y}} f(x) d x=F(\sqrt{y})-F(0) \\
&= {[x]_{0}^{\sqrt{y}}=\sqrt{y} } \\
& \quad g(y)=\frac{d G(y)}{d y}=\frac{d \sqrt{y}}{d y}=\frac{1}{2} \cdot y^{-\frac{1}{2}}
\end{aligned}
$$

(b) $y=\sqrt{x}$

$$
\begin{aligned}
G(y) & =\operatorname{Pr}[Y \leq y]=\operatorname{Pr}[\sqrt{x} \leq y] \\
& =\operatorname{Pr}\left[x \leq y^{2}\right] \\
& =\int_{0}^{y^{2}} f(x) d x=F\left(y^{2}\right)-F(0) \\
& =[x]_{0}^{y^{2}}=y^{2}
\end{aligned}
$$

$$
g(y)=\frac{d G(y)}{d y}=\frac{d y^{2}}{d y}=2 y
$$

Bulmer Problem 3.2

(a) First, the proof when b is a negative number follows.

$$
G(y)=\operatorname{Pr}[Y \leq y]=\operatorname{Pr}[a+b X \leq y]=\operatorname{Pr}[b X \leq y-a]=\operatorname{Pr}\left[X \geq \frac{y-a}{b}\right]
$$

Since the total probability of any distribution is $1, \operatorname{Pr}\left[X \geq \frac{y-a}{b}\right]$ will be the same as $1-\operatorname{Pr}\left[X \leq \frac{y-a}{b}\right]$. (note: you can also consider this as same as $\operatorname{Pr}\left[X \leq-\frac{y-a}{b}\right]$, but it only woks when the symmetry of a distribution is assumed.) Therefore,

$$
\begin{aligned}
G(y) & =1-\operatorname{Pr}\left[X \leq \frac{y-a}{b}\right]=1-F\left(\frac{y-a}{b}\right) \\
g(y) & =\frac{d G(y)}{d y}=-\frac{1}{b} f\left(\frac{y-a}{b}\right)
\end{aligned}
$$

by Chain rule.
(b) Now, the application. When $Y=-\log _{e} x$, find $g(y)$. First, X is assumed to be uniformly distributed between 0 and 1 . From this assumption, we can induce X 's probability density function of $f(x)$. It is

$$
f(x) \begin{cases}1 & \text { if } 1 \leq x \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$f(x)$ is always a constant of 1 , since the probability of $f(x)$ is evenly 1 at any point on x-axis. Using the procedure in (a),

$$
\begin{aligned}
G(y) & =\operatorname{Pr}[Y \leq y]=\operatorname{Pr}\left[-\log _{e} x \leq y\right]=\operatorname{Pr}\left[\log _{e} x \geq y\right] \\
& =1-\operatorname{Pr}\left[\log _{e} x \leq-y\right]=1-\operatorname{Pr}\left[x \leq e^{-y}\right] \\
& =1-F\left(e^{-y}\right) \\
g(y) & =\frac{d G(y)}{d y}=-f\left(e^{-y}\right)(-1) e^{-y}=e^{-y}
\end{aligned}
$$

Bulmer Problem 3.3

This is a similar question as the first one, but with different X distribution. Now, X is uniformly distributed between -1 and 2 , which makes the probability density function of X is

$$
f(x) \begin{cases}\frac{1}{3} & \text { if }-1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

And $Y=X^{2}$. The transformation process yields

$$
G(y)=\operatorname{Pr}[Y \leq y]=\operatorname{Pr}\left[X^{2} \leq y\right]=\operatorname{Pr}[-\sqrt{y} \leq x \leq \sqrt{y}]
$$

Here, we have to consider the range of possible $x \mathrm{~s}$. Differing from the Problem 3.1, x has the range of $[-1,2]$. Between $[-1,1], Y$ is non-monotonous function and then monotonously increasing between [1,2]. The distribution function should be different for these two different ranges.

First, I consider when x is between $[-1,1]$. The transformation is:

$$
\begin{aligned}
G(y) & =\operatorname{Pr}[-\sqrt{y} \leq x \leq \sqrt{y}]=\int_{-\sqrt{y}}^{\sqrt{y}} f(x) d x \\
& =F(\sqrt{y})-F(-\sqrt{y}) \\
g(y) & =\frac{d G(y)}{d y}=f(\sqrt{y}) \frac{1}{2} y^{-\frac{1}{2}}-f(\sqrt{y})\left(-\frac{1}{2}\right) y^{-\frac{1}{2}} \\
& =\frac{1}{3} y^{\frac{1}{2}}
\end{aligned}
$$

This works if $0<y \leq 1$ since the function is not defined if y is 0 .
Now, consider the case when x is between $[1,2]$. As noted, it is increasingly monotonous with a lower boundary. Therefore,

$$
\begin{aligned}
G(y) & =\operatorname{Pr}[1 \leq x \leq \sqrt{y}]=\int_{1}^{\sqrt{y}} f(x) d x=F(\sqrt{y})-F(1) \\
g(y) & =\frac{d G(y)}{d y}=f(\sqrt{y}) \frac{1}{2} y^{\frac{1}{2}} \\
& =\frac{1}{6} y^{\frac{1}{2}}
\end{aligned}
$$

This is when $1<y \leq 4$.

Experimental Question

For the Stata result, please see attached.
Theoretical mean can be obtained by using the following formula.

$$
\begin{aligned}
E(x) & =\int_{0}^{1} x f(x) d x=\int_{0}^{1} x \cdot 1 d x=\left[\frac{1}{2} x^{2}\right]_{0}^{1} \\
& =\frac{1}{2} \\
\operatorname{Var}(x) & =\int_{0}^{1}(x-E(x))^{2} d x=\int_{0}^{1} x^{2}-x+\frac{1}{4} d x \\
& =\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{4} x\right]_{0}^{1}=\frac{1}{12}
\end{aligned}
$$

Now, compare these with Stata result.

