# Problem Set 7 Solution 

17.872 TA Jiyoon Kim

Nov. 26, 2003

## Bulmer Exercise 10.1

You need to first calculate the probability of throwing six on a white die. This is $3932 / 20000$.
$E($ throwing a 6 with the white die $)=\frac{3932}{20000}=0.1966$
$\operatorname{Var}($ throwing a 6 with the white die $)=(.1966)(1-.1966)=.1579$

$$
95 \% \text { of confidence interval }=0.1966 \pm 1.96 \sqrt{\frac{1579}{20000}}
$$

$$
=.1966 \pm .0055
$$

## Bulmer Exercise 10.2

(a) Since we would like to use proportion, I will use Table 2b.

$$
\begin{aligned}
\operatorname{Pr}(\text { stillborn in male }) & =\frac{.012}{.5141}=.0233 \\
95 \% \text { confidence interval } & =.0233 \pm 1.96 \sqrt{\frac{.0233(1-.0233)}{368490}} \\
& =.0233 \pm .00049
\end{aligned}
$$

(b) In female case,

$$
\begin{aligned}
\operatorname{Pr}(\text { stillborn in female }) & =\frac{.0109}{.4859}=.0224 \\
95 \% \text { confidence interval } & =.0224 \pm 1.96 \sqrt{\frac{.0224(1-.0224)}{34850}} \\
& =.0224 \pm .00049
\end{aligned}
$$

(c) What about gender difference?

$$
\begin{aligned}
\operatorname{Pr}(\text { difference }) & =\operatorname{Pr}_{\text {male }}-\operatorname{Pr}_{\text {female }}=.01 \\
\operatorname{Var}(\text { difference }) & =\frac{.0233(1-.0233)}{368490}+\frac{.0224(1-.0224)}{34850} \\
& =.0000001249 \\
95 \% \text { confidence interval } & =.001 \pm 1.96 \sqrt{.0000001249} \\
& =.001 \pm .00069
\end{aligned}
$$

## Bulmer Exercise 10.5

|  | Hyoscyamine | Hyoscine | Difference |
| :---: | :---: | :---: | :---: |
| $\bar{x}$ | .75 | 2.33 | 1.58 |
| $s$ | 1.79 | 2 | 1.23 |
| $t=\frac{\bar{x}}{s / \sqrt{10}}$ | 1.32 | 3.68 | 4.06 |

(a) Hyoscyamine:

$$
\begin{aligned}
& \left|\frac{\bar{x}-\mu}{s / \sqrt{10}}\right| \leq 2.262,|\bar{x}-\mu| \leq 2.262 \times \frac{s}{\sqrt{10}} \\
& \bar{x}-2.262 \times \frac{s}{\sqrt{10}} \leq \mu \leq \bar{x}+2.262 \times \frac{s}{\sqrt{10}} \\
& .75-2.262 \times \frac{1.79}{\sqrt{10}} \leq \mu \leq .75+2.262 \times \frac{1.79}{\sqrt{10}} \\
& .75-1.28 \leq \mu \leq .75+1.28
\end{aligned}
$$

note : This is $t$ - distribution since it is using $s$ instead $\sigma$. You have to refer to $t$-table. $(d . f .=10-1=9)$
(b) In case of hyoscine,

$$
\begin{aligned}
& 2.33-2.262 \times \frac{2}{\sqrt{10}} \leq \mu \leq 2.33+2.262 \times \frac{2}{\sqrt{10}} \\
& 2.33-1.43 \leq \mu \leq 2.33+1.43
\end{aligned}
$$

(c) It is basically asking you the difference.

$$
\begin{aligned}
& 1.58-2.262 \times \frac{1.23}{\sqrt{10}} \leq \delta \leq 1.58+2.262 \times \frac{1.23}{\sqrt{10}} \\
& 1.58-.88 \leq \delta \leq 1.58+.88 \\
& .7 \leq \delta \leq 2.46
\end{aligned}
$$

## Bulmer Exercise 10.6

Now, you have to obtain confidence interval for standard deviation. In the table, we are only given $s$ and do not know of real or true $\sigma$. We were hinted that $\frac{S^{2}}{\sigma^{2}} \sim \chi_{9 d . f .}^{2}$, which means that $\sigma^{2}$ will fall into the region of $\frac{S^{2}}{\chi_{.025}^{2}}$ and $\frac{S^{2}}{\chi_{.975}^{2}}$ with 9 degrees of freedom. ( $S^{2}$ is sum of square of mean deviation. that is $\sum\left(x_{i}-\bar{x}\right)^{2}$.)

$$
\begin{aligned}
& \chi_{.025}^{2}=19.02 \& \chi_{.975}^{2}=2.70 \\
& S^{2}=s^{2}(n-1)=4 \times 9=36 \\
& \frac{36}{19.02} \leq \sigma^{2} \leq \frac{36}{2.7} \\
& 1.89 \leq \sigma^{2} \leq 13.33
\end{aligned}
$$

1. $\sigma^{2} \geq 1.89, \sigma \geq 1.37$ and $\sigma \leq-1.37$
2. $\sigma^{2} \leq 13.33,-3.65 \leq \sigma \leq 3.65$

The range that satisfies both of (1) and (2), and also standard deviation should not be negative,

$$
1.37 \leq \sigma \leq 3.65
$$

