Recitation Note

17.872 TA Jiyoon Kim

Sep. 30, 2003

1 Some Integration Theorem

1. A constant can be moved through an integral sign.

$$
\int c f(x) d x=c \int f(x) d x
$$

2. An integration of a sum is the sum of the integrations.

$$
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
$$

3. An integration of a difference is the difference of the integrations.

$$
\int[f(x)-g(x)] d x=\int f(x) d x-\int g(x) d x
$$

2 Integration Rules

1. Power Rule

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c
$$

2. Exponential Rule I

$$
\int e^{x} d x=e^{x}+c
$$

3. Exponential Rule II

$$
\int f^{\prime}(x) e^{f(x)} d x=e^{f(x)}+c
$$

4. Logarithm Rule I

$$
\int \frac{1}{x} d x=\ln x+c
$$

5. Logarithm Rule II

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\ln f(x)+c
$$

Examples:

1) $\int 2 e^{2 x}+\frac{14 x}{7 x^{2}+5} d x$
2) $\int \frac{4 x}{2 x^{2}+1} d x$
3) $\int \frac{x}{3 x^{2}+5} d x$

3 Substitution Rule

When you have integration with high power or with complicated form, you can use substitution rule. First, you put the complicated part as u and find $\frac{d u}{d x}$. Then, substitute the original equation with u and $\frac{d u}{d x}$ to solve it in u term.

Example:

1) $\int 2 x\left(x^{2}+1\right)^{50} d x$
2) $\int 6 x^{2}\left(x^{3}+2\right)^{99} d x$

4 Integration by Parts

The integral of v with respect to u is equal to $u v$ minus the integration of u with respect to v.

$$
\int v d u=u v-\int u d v
$$

Here, you use the less complicated part (usually one term) as v and the rest of the integration including integral sign and $d x$ as u. For example, if you have $\int x(x+1)^{\frac{1}{2}} d x, v$ should be x and u should be $\int(x+1)^{\frac{1}{2}} d x$. Then, find $d v$ and $d u$ to plug them in the formula.

Example:

1) $\int x e^{x} d x$
2) $\int \ln x d x$

5 Properties of Sigma Notation

The following properties of sigma notation will help to manipulate sums:
1.

$$
\sum_{k=1}^{n} c a_{k}=c \sum_{k=1}^{n} a_{k}
$$

2.

$$
\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}
$$

3.

$$
\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n} b_{k}
$$

Question Are these true?

1) $\int\left[\sum_{i=1}^{n} f_{i}(x)\right] d x=\sum_{i=1}^{n}\left[\int f_{i}(x) d x\right]$
2) $\frac{d}{d x}\left[\sum_{i=1}^{n} f_{i}(x)\right]=\sum_{i=1}^{n}\left[\frac{d}{d x}\left[f_{i}(x)\right]\right]$
3) $\sum_{i=1}^{n} a_{i} b_{i}=\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i}$
4) $\sum_{i=1}^{n} \frac{a_{i}}{b_{i}}=\frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}$
5) $\sum_{i=1}^{n} a_{i}^{2}=\left(\sum_{i=1}^{n} a_{i}\right)^{2}$

Quick Question
Let \bar{x} denote the arithmetic average of the n numbers $x_{1}, x_{2}, \cdots, x_{n}$. Prove
that

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0
$$

