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2. Mathematics Review
Models are mathematical representations of a behavior or phenomenon of interests. There

are many di®erent ideas about how to go about building a model. In political science today,

game theory is the foundation for much formal modeling (e.g., bargaining models of the

division of resources in legislatures). There are other traditions, such as dynamic models in

which equilibria are "steady states" (e.g., Richardson's war model).

To be able to read and understand modeling requires a degree of familiarity with basic

mathematical concepts. We will review them here. My review is in no way meant as

a substitute for more in depth and rigorous mathematical instruction, which I strongly

recommend.

We will begin this review with some basic algebraic ideas and then move onto concepts

from Calculus.

1. Variables.

In algebra we use capital letters to denote a phenomenon or concept which can be repre-

sented using a metric, such as continuous numbers or counting numbers, and has a de¯ned

range. That range is speci¯ed by bounds, such as 0 to 100 or from ¡1 to +1. We will

represent variables with capital letters usually from the end of the alphabet, e.g., X, Y , or

Z. These are just names of the variables. We will represent a speci¯c value (in the abstract)

as a lower case letter, e.g., x, y, or z.

Several di®erent sorts of variables arise commonly. One important distinction is between

continuous and discrete variables. A continuous variable takes any value along a continuum

of numbers. A discrete variable takes values that are separated by discrete intervals, such

as di®erent groups of people or objects (including gender, race, etc.) or ordered numbers

(including ranks and counts).

An example of a variable is Income. The concept of Income is widely discussed in social

sciences { for example, national income or gross domestic product, and income inequality.

When we set out to measure income we must be more speci¯c about units and the type of
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income. Often we deal with wage income, but there is also income from investments, in-

heritance, and other sources to be accounted for. There is household income and individual

income. Also, income in one year has a di®erent value or purchasing power than income in

another year. Often researchers de°ate variables using an index of prices to make data com-

parable over time. Usually income is treated as a continuous variable because the intervals

of a penny or less are too small to consider meaningful.

2. Sets.

A set is a collection of things or numbers. Sets are widely used in statistics. We will

use capital letters at the beginning of the alphabet to represent sets, e.g., A, B, and C. An

element is the simplest unit in a set { a unique individual in a set that cannot be further

reduced. We denote elements with lower case letters, sometimes with subscripts, e.g., a1, a2,

... an are elements of A.

A set is often de¯ned as a set of numbers. We use braces to mark the set and a bar |

to separate the typical element from the set of numbers in the set. For example the set of

all real numbers between 0 and 100 is written A = fxjX > 0andX < 100g.
Two special sets are the empty set, which has no elements and is denoted Á, and the

universal set, which contains all possible elements and is denoted .

Three important operations on sets are unions ([), intersections (\), and complements.

The union of two sets, written A[B, is the set of elements in both sets. The intersection of

two sets, written A \B, is the set of points in both sets. The complement of a set, written

AcorA, is the set of points not in the set.

For example, let A = fxjX > 0andX < 100g and B = fxjX > 50andX < 500g. Then,

A [ B = fxjX > 0andX < 500g and A \ B = fxjX > 50andX < 100g. Ac = fxjX ·
0; X ¸ 100g.

If A and B contain no elements in common, then A \ B = .

A ¯nal set concept is conditioning. Sometimes we might want to restrict the universe to

a smaller set. We write this as (B | A). Conditioning amounts to partitioning the universe
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into the set in A and the set not in A and then Suppose that we wanted only to consider

the set of cases where a certain condition holds, for example A = fxjX > 0g. We may then

want to consider a new set only under the condition that A holds. For example, suppose

that B = fxjX > ¡50andX < 50g. Conditioning is very closely related to the intersection

The inference problem is a clear example of conditioning. One of two states of the world

hold. The hypothesis is true or the hypothesis is not true. If the hypothesis is true, then if

we decide it is false we commit an error. If the hypothesis is fale, the we commit another

sort of error when we decide that the hypothesis is true. These two types of errors are called

\false negatives" and \false positives."

3. Functions.

Functions map one set of numbers into another set of numbers. One may think of the

function as having one variable as an input and another variable as an output. We will use

a lower case letter to denote a function and parentheses to denote the argument, e.g., y =

f(X). Functions often include constatnts (numbers) as well as variables. For example, the

formula for a straight line is Y = a+ bX. The constants a and b are called parameters.

Usually we reserve the term function for a speci¯c sort of mapping { one for which an

X returns one y. It is possible for many x values to return the same y, but not for many y

from any one x. A circle, then, is not a function.

Generally, we will use Y for the output variable and X for the input variable. The output

variable is called the dependent variable and the input the Independent variable.

The inverse of a function reverse the mapping of X to Y and becomes Y to X. We write

this as X = f¡1(Y ).

A. Counting Functions

Two simple functions useful in analysis using sets are indicator functions and counting

functions. An indicator function returns the value of 1 if a number is in a set and 0 otherwise.
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For example, an indicator function may equal 1 if a person is female and 0 if a person is

male. If we let j index elements in a set, then we may write the indicator of whether an

individual is in A as Ij(A = 1).

A counting function returns the number of elements in a set: n(A). This equals the sum

of the indicator functions of A for all individuals in the set. That is n(A) =
Pn
j=1 Ij(A = 1).

For a ¯nite set the total number of elements n = n(). And, n(Á) = 0. Also n(A [ B) =

n(A) + n(B) ¡ n(A \B).

The basic rule of counting involves enumerating the number of ways that a sequence of

events can happen or tasks can be done. Suppose that a series of tasks are performed. The

¯rst task involves N1 possible actions; the second involves N2 possible actions; and so on. A

sequence k actions can be performed N1N2N3:::Nk di®erent ways.

Two important counting functions emerge from this rule.

1. Factorials

If n is a positive integer, then the product of the integers from 1 to n is called n-factorial

and is written n!. Note: 0! = 1. n! is the number of ways that n numbers can be ordered,

or the number of ways that n tasks can be performed when there are n possible actions to

take without repeating one of the actions. Suppose that we want to arrange n objects in

an order. I choose one (arbitrarily) to begin a sequence. There are n possible choices; I

choose one and set it aside. Then, I choose another object from the remaining (n-1); there

are n-1 possible choices. If I continue in this vein I could have made the arrangment or order

n! = n(n¡ 1)(n¡ 2)(n¡ 3):::21 possible ways, or taken n! possible actions.

2. Binomial Coe±cients

If we perform the same sort of task but do not care about the order, we will arrive at a

di®erent counting function. If we form a subset of size k from the set of n objects, without

regard to the order, then the number of ways that could happen equals the number of ways

the n objects could be arranged divided by the number of ways they could be divided into
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a group of size k and a group of size n¡ k. That is:
Ã
n
k

!
=

n!
k!(n¡ k)!

An example of the binomial coe±cients is Pascal's Triangle. Consider the coe±cients on

each of the terms in exapansions of (x + 1)n. When n = 1, (x+ 1)0 = 1, so the coe±cient is

1. When n = 1, (x+ 1)1 = x + 1, so the coe±cient on X is 1 and on 1 is 1. When n = 2,

(x+1)2 = x2+2x+1, so the coe±cients are 1, 2, 1. When n = 3, (x+1)3 = x3+3x2+3x+1, so

the coe±cients are 1, 3, 3, 1. Each coe±cent can be calculated using the binomial coe±cient,

where n is the power of the entire product and k is the exponent of any single term, e.g.,

k = 2 for x2.

The distribution of binomial coe±ents is the core mathematical idea behind the Central

Limit Theorem. For large enough n, the coe±cients follow a bell-shaped curve.

B. Continuous Functions

We will use several types of continuous functions: linear, polynomial, logarithmic, and

exponential.

Linear:

Y = a+ bX

This is the formula for a straight line. The inverse of this function is:

X =
Y ¡ a
b

:

Also, we may have several X variables, which gives the formula for a plane:

Y = a + bX1 + cX2:
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Polynomials:

Y = a0 + a1X + a2X 2 + a3X3 + :::

The most common polynomial we will use is the quadratic.

An example is the spatial representation of ideological preferences. Let X be a party's

announced policy or ideology and let µ be a voter's most preferred policy some point along

the X-axis. Then, the voter's utility from party X winning is

U(X; µ) = ¡(X ¡ µ)2

This representation captures a bit of the spirit of modeling. It is a mathematical represen-

tation of some key ideas. It does involve some restrictions, such as symmetry.

Inversion of polynomials is often complicated. A simple polynomial of the form Y = X b

is readily inverted using the bth-root. To isolate X, raise both sides of the equation to 1=b:

X = (Y=a)1=b. A function with 1=2 in the exponent is the square root, 1=3 the cube root,

and so forth.

Finally, negative exponents mean that an operation is in the denominator of a ratio.

Y = X¡b = 1=Xb.

Example: The Cube Law. In the study of electoral systems, scholars and constitutional

designers distinguish two sorts of systems. Proportional representation systems set the share

of seats a party receives in the parliament equal to that party's share of the national vote

won during the election. A party that wins 20 percent of the vote receives 20 percent of the

seats. Plurality rule or ¯rst-past-the-post systems set up districts within the country, and

parties or candidates win seats if they win a plurality of the vote in a district. A party's

share of the national vote does not translate immediately into a share of the seats. However,

patterns that have arisen in elections over time have given rise to a particular relationship,

the law of cubic proportions (see Edgeworth 1898 and Kendall and Stuart 1950).

Let V be the proportion of votes won nationally and S be the proportion of Seats received.

Then,
S

1¡ S =
µ V

1¡ V
¶3
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[End of Lecture 2]

Exponential:

Y = bX;

where b is a number, such as 2 or 10.

Growth problems take an exponential form. For example, if each generation produces

2 o®spring per individual, then after n generations there will be 2n individuals. With such

a birth process, after 10 generations there will be 1024 individuals in the population. An

important class of models in the study of populations are birth-death models. In the study

of a country's population one must also add in migration.

Exponentials have some special properties. b0 = 1. Also, bX + bZ = bX+Z. (A special

base is e = 2:71828::::, which we will derive below.)

Logarithm:

X = logb(Y )

This function is de¯ned as the value of X such that the number Y equals b to the X. If b is

2 and Y is 4, then X = 2. The log(0) is not de¯ned. It approaches ¡1.

Logarithms have some special properties. log(1) = 0. Also, log(ZX) = log(Z) + log(X ),

and log(Z=X ) = log(Z) ¡ log(X ). From this second property it follows that log(Xb) =

log(X) + ::: + log(X) = blog(X ).

Logarithms are very widely used in data analysis because they convert a multiplicative

relationship into a linear one and linear models are easier to work with. Assume Y = AXb
1X

c
2.

Then, log(Y ) = log(A) + blog(X1) + clog(X2). Note: if one of the variables takes the value

0, then the function is unde¯ned because log(0) = ¡1.

Example: Cobb-Douglas production function. Suppose that there are two inputs used to

produce a good, Y . The inputs are capital, K, and labor, L. The amount of Y produced

with any K-L pair is Y = AK¯L®, ® > 0 and ¯ > 0.
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We will mix and match and combine these functions. Of particular note, the function for

the normal curve combines the exponential and the quadratic. If Z is a standard normal,

then Z ranges from ¡1 to +1 and

y =
1p
2¼
e¡

1
2 z

2

4. Limits.

Limits link continuous and discrete problems. This is the fundamental concept on which

calculus and analysis is based and it is a fundamental tool in statistics, as we de¯ne prob-

abilities as long-range frequencies. A few examples help build your intuitions and facility

with this idea.

Consider a sequence of numbers an = 1=n. This sequence is 1; 1=2; 1=3; 1=4; 1=5; ::::. This

sequence has a lower boundary { it is always larger than 0, but the set does not contain the

point 0. However, as n becomes arbitrarily large the sequence becomes arbitrarily close to

0. We can choose any n we like, and as we choose larger values of n we approach 0 from

above. We say that the limit of this sequence is 0.

Consider a second sequence of numbers an = n
n+1. This sequence is 1=2; 2=3; 3=4; 4=5; 5=6:::.

This sequence also has a boundary, 1. The set is always lower than 1 and it becomes arbi-

trarily close to 1 for arbitrarily large values. We may actually derive the result for this case

from the ¯rst case. Rewrite the sequence as an = 1 ¡ 1
n+1. The ¯rst part of the expression

is always 1 for any n. The second part of the expression, we learned in the ¯rst example,

becomes arbitrarily close to zero. Hence, the sequence in this example approaches 1 as n

becomes very large.

These two examples exhibit both the idea of the limit and one method for evaluating

limits. The method is to divide the sequence into a part that is a constant and the remainder

and show that the remainder vanishes. Another method for evaluating limits is to establish

boundaries that squeeze a sequence to a speci¯c number.
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A. De¯nition

A more precise de¯nition of a limit is as follows. Let fa1; a2; a3:::g be a sequence of

numbers and let l be a number. We say that l is the limit of this sequence if for any small

positve number ², there is a positive integer M such that for all n ¸N , an is in the interval

around l that is smaller than ²:

jan ¡ lj < ²

We write this as limm!1xm = b or xm! b.

Limits are easily manipulated algebraically. Here are some useful properties of limits:

1. Limits of sums are the sums of limits: limn!N a + bn = a + bN .

2. Limits of powers are the powers of limits: limn!N nb = Nb.

3. For two functions, the limit of the sum (or di®erence) is the sum (or di®erence)

of the limit. Consider two functions f(n) and g(n), limn!N f(n) + g(n) = f (N) + g(N).

4. The limit of the product (or ratio) of two functions is the product (or ratio) of

the limit: limn!N f (n)g(n) = f(N)g(N).

5. It follows from 1, 2, and 3 that the limit of a polynomial is the polynomial of

the limit: limn!N a0 + a1n + a2n2 + a3n3 + ::: = a0 + a1N + a2N2 + a3N3 + :::.

B. Three Important Limits.

1. The number e = 2:71828:::.

e = lim
n!11 +

1
1!

+
1
2!

+
1
3!

+
1
4!

+ ::: +
1
n!

= lim
n!1

1X

n=0

1
n!

Another limit that equals e is

e = lim
n!1

µ
1 +

1
n

¶n
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Approximating e

n Approx. e
1 2
2 2.25
4 2.4414
10 2.59374
100 2.704814

1,000 2.7169239
10,000 2.17181459
100,000 2.17826824

10,000,000 2.178281693

2. The number ¼ = 3:14159:::. Wallis' product (see Courant, vol. 1, pages 223 - 226) is

the ratio of the product of squares of n -1 even numbers and n-1 odd numbers. Speci¯cally:

¼
2

= lim
n!1

2
1

2
3

4
3

4
5

6
5
:::

2n
2n¡ 1

2n
2n+ 1

= lim
n!1

224262:::(2n¡ 2)2

325272:::(2n¡ 1)2 2n

Algebraic manipulation reveals allows us to expresses ¼ as a function of the factorial n!.

Taking squareroots of both sides and multiplying top and bottom by 246:::(2m¡ 2), we get

r
¼
2

= lim
n!1

2£ 4£ 6:::£ (2n¡ 2)
3 £ 5:::£ (2n¡ 1)

p
2n = lim

n!1
224262:::(2n¡ 2)2

(2n)!

p
2n

2n

This can be rewritten as
p
¼ = lim

n!1
22n(n!)2

(2n)!
p
n

The term inside the limits gives a handy formula for approximating ¼.

10



Approximating
p
¼ = 1:77245

n Approx.
p
¼

1 1
2 1.8856
4 1.8475
10 1.79474
100 1.774671

1,000 1.772675
10,000 1.772476

3. Stirling's formula. Many statistical problems involve n!, which is hard to calculate

or work with in analytical formulae. Stirling's formula provides an approximation that is

used in proving basic statistical results, such as the Central Limit Theorem for Binomials.

Stirling's Formula is this:

n!!
p

2¼nn+:5e¡n:

or log(n!) ¼ nlog(n) ¡n + :5log(n) + log(
p

2¼).

The formula can be derived by considering how well log(n!) approximates the continuous

function y = log(x). The area under the curve y = log(x) from 1 to n is nlog(n) ¡ n + 1.

One may approximate the area under y = log(x) using the sum of trapezoids with base

from n to n + 1 and height de¯ned as log(n) and log(n + 1). The sum of the areas of

these trapezoids is log(2) + log(3) + log(4):::+ log(n)¡ 1
2 log(n) = log(n!)¡ 1

2log(n). Hence,

nlog(n)¡n+1 ¼ log(n!)¡ 1
2log(n). Taking exponents of both sides, yields nne¡ne ¼ n!=

p
n,

or n! ¼ nn+:5e¡ne. Further analysis reveals that the approximation can be improved further

using
p

2¼ instead of the last e (because the continuous function lies above the trapezoids

constructed to approximate the area under the curve). Note, however, the similarity between

e = 2:71828 and
p

2¼ = 2:506628.

C. Compounding and Interest Rates
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You invest A dollars at an interest rate r. If the interest payment is made at the end

of one year then you receive A(1 + r). What if the bank pays you interest after 6 months

and then you can automatically reinvest what you have and are paid interest on the accrued

amount? Then, you recieve A(1 + r
2)((1 + r

2). One can continue in this vein until you get a

more general formula for any m divisions of the year: A(1 + r
m)m.

One may think of compounding as a bonus that the bank gives you for keeping your

money there rather than withdrawing and reinvesting elsewhere. To appreciate the value of

compounding, suppose that you invest $100,000 in an account that o®ers 6 percent annual

interest, compounded quarterly. How much would you earn in interest at the end of the

year? How does that compare with the return on your investment without compounding?

Without compounding, you would earn 6 percent on $100,000, or $6,000. Using the formula,

with m = 4, you would earn $6136.36, or slightly more than 2 percent more than without

compounding.

What if the bank compounds continously? To isolate the e®ect of continous compound-

ing, assume A = 1 and r = 1. The formula for the amount paid at the end of a year is, then,

limn!1(1 + 1
n )n = e. The exponential function is the limit of the sequence

ex = lim
n!1

µ
1 +

x
n

¶n
:

With continuous compounding, the return on an investment of A dollars is Aer.

This simple formula makes it extremely easy to calculate and compare the return on

di®erent investments. Using the properties of limits we can consider the value of a multi-year

investment. Speci¯cally, from property 3, the return on a investment that is continuously

compounded over t years is Aert.

In the theory of investments it is important to be able to compare di®erent investment

opportunities made over varying time periods and weigh their value. One way to do this

is to compute the Present Values of the investments. The compound interest formula gives

us an extremely simple way to do so. If an investment pays B dollars after t years with an

interest rate r, we would like to know the present value of that investment. We make this
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computation using the inverse: Be¡rt = A.

For example, a ten-year Treasury bond pays $1,000 on a 3 percent interest rate. That

means, in 10 years you can cash in the bond for $1,000. How much is that bond worth

in today's dollars? How much would you have to pay for that bond? Answer: $740:82(=

1000e¡:03£10).

[Lecture 3 ended here]

D. Continuity

Limits allow us to give a more precise de¯nition of continuity. A function f(x) is said

to be continuous if the limit as x approaches any point N in the domain of X is equal

to the value of the function at that point, i.e., f(N). Step functions are not continuous;

polynomials are continuous. Some rational functions may not be as the denominator may

tend to zero as it approaches a point.

Mathematical modeling often assumes continous functions, because analysis using con-

tinuous functions is much easier.
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5. Di®erentiation

Measuring the e®ect of one variable on another variable is of central concern to social

scientists and policy analysts. For example, investing in the stock market involves a certain

amount of risk as the market as a whole °uctuates. Speci¯c stocks also °uctuate at their

own rate. Investors measure the risk of a stock relative to the market as the °uctuation

in the individual stock's price as a function of the °uctuation in the market's average or

overall price. If one makes a graph of the percentage change in a stock's price against

the percentage change in the market's price, the relationship looks very linear. When the

relationship between the indpedendent and dependent variables is a straight line, we can

represent the e®ect as the slope of the line { the change in Y divided by the change in X.

Many problems require more complicated functions. Di®erentiation generalizes the con-

cept of the slope beyond the linear case. The basic tool for analyzing continuous fucntions is

di®erentiation, which is the calculation of the instantaneous rate of change of a continuous

function. That is, if we change X an arbitrarily small amount, how much will y change?

A. Examples

i. Marginal returns

In a wide variety of problems we want to know how changing behavior somewhat will

change outcomes. For example, how will adding more police on the street a®ect crime rates?

It is usually too expensive to double the number of police, but how much will a modest

increase, say a 5 percent increase, in the police force a®ect crime? Will crime change a little

or a lot? Is the change in crime worth the cost of training and hiring the additional force?

Another example arises in your exercise. You are to use census data to measure the

marginal returns to education. How much additional wages can you expect to earn for each

additional year of education? Are the marginal returns decreasing, as standard economic

theory of capital suggests, or increasing, as many recent arguments about rising inequality
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suggest?

You can measure how an additional year of education translates into higher wages by

calculating the di®erential. That is, you are working with the function:

Yt = ®0 + ®1St + ®2S2
t +®3Xt

The di®erential is the change in wages with respect to a unit change in one of the independent

variables: Yt(S = s) ¡ Yt(S = s¡ 1). This is:

¢Yt = ®1(s¡ (s¡ 1)) +®2(s2 ¡ (s¡ 1)2) = ®1 ¡ 2®2(s¡ 1)

A simple way to represent these phenomena is to model how di®erences in the indepen-

dent variable translate into changes in the dependent variable. Since these variables are

continuous, we need a way to measure rates of change for continuous functions.

ii. Risk Attitudes

Many problems imply that functions used to model behavior take a certain shape. An

important distinction in studying shape of function is concavity and convexity. A convex

function is \bowl" shaped; a concave function is \hill" shaped.

An important application is modeling decision making under uncertainty. A person is

said to be risk neutral if he or she is indi®erent between a \sure thing" and a gamble that

has an expected or average value equal to the \sure thing." A person is risk averse if he or

she prefers the sure thing to the gamble, and risk accepting if he or she prefers the gamble to

the sure thing. A person's preferences can be represented by a \utility" function { a function

that expresses the value that an individual places on money and consumption goods. The

concavity of the utility function in terms of money captures the individual's attitudes.

A function is said to be concave if, for any two points, the value of the function at a

weighted average of these two values is larger than the weighted average of the values of the

function evaluated at the two points separately. If the opposite holds the function is convex.

Speci¯cally, consider any two points, x1 and x2, in the domain of X . Let ® be a number

between 0 and 1, ie.,0 < ® < 1. The function f(x) is concave if and only if f(x = ®x1 +(1¡
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®)x2) > ®f (x1) + (1 ¡ ®)f(x2).

In decision-making under uncertainty, we think of ® as the probability of the event that

pays x1 and 1 ¡ ® to be the probability of the event that pays x2. The expected value of

these two events is ®x1 + (1¡ ®)x2, which is sometimes called the certainty equivalent.

This mathematics is somewhat cumbersome, a more elegant description of risk attitudes

can be arrived at using a measure of the rate of change of the rate of change of the utility

function, i.e., the second derivative.

iii. Maximizing Behavior

Decision-making also involves making choices that give one the highest utility or the

highest payo®. For example, in contests, such as military con°icts or political campaigns, a

player chooses how much e®ort to expend to win a contest. Let X be the amount of e®ort

spent to win the contest; let P = X=(X + a) be the probability of winning the contest as a

function of e®ort; and let the cost of e®ort be c(X ), say c(X) = c1X.

The payo® to the player is the probability of winning times the value of winning (say 1)

minus the cost. So the player chooses X to maximize U(X) = P (X)¡c(X), that is to make

U(X ) highest. The graph indicates that such a point exists

[Graph]

iv. Statistical Optimization.

Statistical modeling often begins with an objective function that summarizes the process

that generated the data (the distribution of the data). The challenge for the statistician

is the ¯nd the most e±cient way to use the data to estimate the unknown parameters of

the objective function. Typically, the objective function measures the variability of the data

around the hypothesized model and

For example, regression analysis consists of ¯nding the intercept and slope of the line

that minimizes the total amount of \error," where the error is the squared deviation of the

observed dependent variable from the predicted values. Let yi be the observed value of

the dependent variable and xi be the observed value of the independent variable. The true
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relationship between these variables is yi = ®+ ¯xi +², where ² is \error." We wish to derive

formulas for ® and ¯ in terms of things we observe, i.e., xi and yi. To do so, we choose ®

and ¯ to minimize the total error:

nX

i=1
²2
i =

nX

i=1
(yi ¡ (®+ ¯xi)2

This is a parabola in ¯ and ®. We wish to choose a and b that are at the lowest point of

the bowl.

B. De¯nition of Derivative

The derivative is a continuous measure of the rate of change of a function. We de¯ne the

derivative as the limiting value of the di®erential. We assume, therefore, that the function

in question is continuous.

Consider a function of a single variable. Let h equal the di®erence between two values of

X, i.e., h = (x + h) ¡ x. The derivative is the slope of the line tangent to the curve at the

point x.
dy
dx

= lim
h!0

f (x+ h) ¡ f (x)
h

Note: both the top and the bottom of this ratio tend to 0.

Analysis of speci¯c functions will make clear the utility of the derivative.

Before proceeding to speci¯c functions, we de¯ne a similar concept for a function of many

variables. The partial derivative measures the rate of change in a function with respect to

change in one variable holding constant all other variables. Let y = f(x1; x2; :::xn), then the

partial derivative is de¯ned as:

@y
@xj

= lim
h!0

f(x1; x2; :::xj¡1; xj + h; :::xn) ¡ f(x1; x2; :::xj¡1; xj; :::xn)
h

Finally, we may take derivatives repeatedly to study more completely the shape of a

function. For example, earlier we related risk attitudes to the rate of change of the rate of

change of an individual's utility function. That is the derivative of the derivative, or the
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second-derivative. We denote this with the exponent 2, because we are essentially squaring

the derivative:
d2y
dx2 =

d
dx

d
dx
f(x)

For functions of many variables, we have a collection of second derivatives: @y
@x2
j

and @2y
@xj@xk

.

C. Speci¯c Functions

i. Polynomials

First consider the straight line

Y = a0 + a1X

Using the de¯nition of the derivative:

dy
dx

= lim
h!0

a0 + a1(x + h) ¡ a0 ¡ a1x
h

= lim
h!0

a1h
h

= a1

Second, consider a power function:

Y = a1Xn;

n! = 1. Using the de¯nition of the derivative:

dy
dx

= lim
h!0

a1(x + h)n ¡ a1xn

h

To analyze this we must expand the polynomial, using the binomial coe±cient. Speci¯cally,

(x+ h)n = xn + n!
(n¡1)!1!x

n¡1h1 + n!
(n¡2)!2!x

n¡2h2::: + hn. Now we can write the limit as

dy
dx

= lim
h!0

1
h

(xn +
n!

(n¡ 1)!1!
xn¡1h1 +

n!
(n¡ 2)!2!

xn¡2h2::: + hn ¡ xn

The terms xn cancel and we can divide each term by h to get:

dy
dx

= lim
h!0

(
n!

(n¡ 1)!1!
xn¡1 +

n!
(n¡ 2)!2!

xn¡2h::: + hn¡1
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As h approaches 0 all of the terms in this expansion will approach 0 because all have a term

hm. Hence the limit equals the ¯rst value in the expression.

dy
dx

=
Ã

n!
(n¡ 1)!1!

!
xn¡1 = nxn¡1

Finally, consider a general polynomial:

Y = a0 + a1X1 + a2X2 + :::anXn

Following the approach above one can show that:

dy
dx

= a1 + 2a2X + :::nanXn¡1

Example. Marginal Return to Education.

In your homework you are to consider how an increase in schooling translates into increase

wages. You may use the di®erencing formula above. You may also consider the formula as

if the change is continuous:

Wages = ®0 + ®1S + ®2S2

dW
dS

= ®1 + 2®2S

Returns to schooling are increasing if ®1 and ®2 are such that the ¯rst derivative is positive

for all values of S is the domain (from 8 to 20 { note I do not presume that graduate education

extends beyond 4 years).

We may further compute the second derivative of this function:

d2W
dS2 = 2®2

The marginal returns to education are decreasing if ®2 < 0.

ii. Logarithms
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Y = log(X)

Assume natural logarithm, written ln(X).

dY
dX

= lim
h!0

ln(X + h)¡ ln(X)
h

Using the rule that the di®erence in logarithms is the log of a ratio, we can write this as

dY
dX

= lim
h!0

1
h
ln
Ã
X + h
X

!
= lim

h!0

1
h
ln
Ã

1 +
h
X

!

Also, use the rule that exponents in logarithms equal coe±cents:

dY
dX

= lim
h!0

ln
Ã

1 +
h
X

!(1=h)

:

This looks very similar to the limit that de¯nes the number e, except that h tends to 0. We

can change the variable on the limit. Let h = 1=m. Then,

dY
dX

= lim
m!0

ln
Ã

1 +
1=X
m

!m
= ln(e1=X) =

1
X
:

Hence,
d
dX

ln(X) =
1
X

Note on Elasticities. This formula for the derivative of the logarithm is of considerable

practical importance in statistics as researchers often measure variables in terms of logarithms

(as mentioned in the last lecture). Typically, one might see a regression analysis along the

following lines:

log(Y ) = a + blog(X):

How do we interpret the coe±cient in a regression analysis when the Y and X variables

are measured in logarithms? To ¯gure this out we take the derivatives of both sides with

respect to X . Hence,
dlog(Y )
dX

=
d

a + blog(X)
dX = b

dlog(X)
dX
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Analyzing both sides:
1
Y
dY
dX

= b
1
X

Solving for b tells us how to interpret the coe±cient in such a regression:

b =
X
Y
dY
dX

=
dY=Y
dX=X

The formulation on the right is the percentage change in Y divided by the percentage change

in X. The coe±cient b, then, represents the percentage change in Y for a one percent change

in X. This concept is called an elasticity.

More generally, transforming variables using logarithms converts the scale from unit

changes in a variable to percentage changes in a variable.

Example. Representation and Public Finances. Ansolabehere, Gerber, and Snyder (2002)

estimate the relationship between log of Representation Per Capita and log of Public Funds

Per Capita. They estimate a linear function of this log-log relationship, and the slope is

.2. This means that a 100 percent increase in a county's state legislative representation

corresponds to a 20 percent increase in the share of public funds received by a county.

iii. Exponentials

Y = eX

dY
dX

= eX

D. Di®erentiation Rules

i. Product

Y = f(X)g(X)
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dY
dX

=
df
dX

g(X ) +
dg
dx
f(X )

iii. Ratio

Y = f(X)=g(X )

dY
dX

=
g(X)(df=dX) ¡ f(X)(dg=dX)

[g(X)]2

Example. Contest.

U(X) =
X

X +A
¡ cX

dU
dX

=
1(X + A)¡ 1X

[X + A]2
¡ c =

A
[X +A]2

¡ c

iii. Chain

Y = g(f(X ))

dY
dX

=
g(f)
df

df
dX

Example. The Shape of the Normal Curve.

f(z) =
1p
2¼
e¡

1
2z

2

df
dz

1p
2¼
e¡

1
2z

2
(¡z);

so this function is increasing for negative values of z and decreasing for positive values of z.

Using the product and the chain rules:

d2f
dz2

1p
2¼
e¡

1
2
z2

(¡z) =
1p
2¼
e¡

1
2
z2 (¡1) +

1p
2¼
e¡

1
2
z2

(¡z)2 =
1p
2¼
e¡

1
2
z2

(z2 ¡ 1);
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so the second derivative is negative if z lies between -1 and +1, i.e., the function is concave,

and the second derivative is positive if z lies outside the interval -1 and +1.

Example. Sums of Squared Errors.

We wish to measure the rate of change in total error with respect to both ® and ¯. This

involves partial di®erentiation. We implement this by considering the change in one of the

variables, assuming the other equals a constant.

S =
nX

i=1
²2i =

nX

i=1
(yi ¡ (®+ ¯xi))2

@S
@®

=
@
@®

nX

i=1
(yi ¡ (® + ¯xi)2 =

nX

i=1

@
@®

(yi ¡ (®+ ¯xi))2 =
nX

i=1
¡2(yi ¡ (® + ¯xi))

@S
@¯

=
nX

i=1

@
@¯

(yi ¡ (® + ¯xi))2 =
nX

i=1
¡2xi(yi ¡ (® + ¯xi))

iv. Implicit Function

h(Y;X ) = 0

@h
@Y

dY
dX

+
@h
@X

= 0

or
dY
dX

= ¡@h=@X
@h=@Y

Example. Cube Law.

A more general formula for the relationship between seats and votes is

S
1 ¡ S = a

µ V
1 ¡ V

¶b

What is dS=dV ? The derivative of the lefthand side with respect to V is 1
[1¡S]2

dS
dV . The

derivative of the righthand side is: ab( V
1¡V )b¡1 1

[1¡V ]2 . Isolating the derivative:

dS
dV

= (1¡ S)2ab(
V

1¡ V )b
1 ¡ V
V

1
[1¡ V ]2

= b(1 ¡ S)2 S
(1 ¡ S)

1
V (1¡ V )

= b
S(1 ¡ S)
V (1 ¡ V )

23



E. Maximization and Minimization

A number of the problems that are of interest involve ¯nding the value of X that makes

Y smallest or largest. Maximizing behavior and statistical optimization both involve ¯nding

such \extreme values." Di®erentiation o®ers a natural way to ¯nd such values.

At a maximum or a minimum of a continuous function, the instantaneous rate of change

in the function equals 0. At a maximum it must also be the case that this value is the top

of a hill, so the function is concave at this point. At a minimum it must be the case that

this value is the top of a hill, so the function is concave at this point.

So a local extreme value can be found by solving the equation or ¯rst order condition:

dY
dX

= 0

One may verify that the function is concave or convex by determining the sign of the second

derivative, the second order condition. When Y depends on many variables, the ¯rst order

condition holds that all partial ¯rst derivatives equal 0. The second order condition is

somewhat more complicated and we leave that to a more advanced course

To develop this concept, let us solve the problems that we have developed during this

unit.

Example. Least Squares Solution to the Statistical Error Function.

To ¯nd the values of ® and ¯ that minimize total squared error set the ¯rst derivatives

equal to zero and solve. Let ®̂ and ^̄ be the values of the parameters that solve the problem.

The ¯rst order conditions, sometimes called \normal equations," are:

nX

i=1
¡2(yi ¡ (®̂ + ^̄xi)) = 0

nX

i=1
¡2xi(yi ¡ (® + ¯xi))

To solve the ¯rst equation, begin by carrying through the sum:

¡2
nX

i=1
¡2yi ¡ (¡2)n®̂ + (¡2)

nX

i=1

^̄xi = 0
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Divide by -2 and isolate ®̂:n®̂
Pn
i=1¡2yi +

Pn
i=1

^̄xi, so

®̂ = ¹y ¡ ^̄¹x

Algebraic manipulation of the second normal equation reveals that

^̄ =
Pn
i=1(xi ¡ ¹x)(yi ¡ ¹y)
Pn
i=1(xi ¡ ¹x)2 ;

which is the covariance between X and Y (a measure of the \rise") divided by the variance

of X(a measure of the \run"). Note, estimates of both parameters can now be expressed as

functions of the data, observed values of X and Y .

Example. Maximizing Behavior.

What is the optimal level of e®ort to devote to winning a costly contest? A player

chooses e®ort level X , given the ¯xed e®ort of others, A, and the cost function cX. Denote

the optimal e®ort level as X¤.

U(X) =
X

X +A
¡ cX

The ¯rst order condition is
dU
dX

=
A

[X¤ + A]2
¡ c = 0

To isolate X¤, put c on the righthand side, multiply both sides of the equation by (X ¤+A)2

and take square roots. Then,

X¤ =

s
A
c
¡ A

If A is large enough this equation is 0, which is out of bounds, so we also have X¤ = 0 if

A > 1=c.

To verify that this is a maximizing strategy take the second derivative of the utility

function:
d2U
dX2 = ¡ 2

[X¤ + A]3
< 0;

for X > ¡A.

Example. Nash Equilibrium.
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What if A is a player too? Suppose both players will choose the level of e®ort that

maximizes their utilities. How will they strategize about this problem. Each will assume

that the other is doing the best he or she can. So, player X will maximize his or her own

utility assuming that A plays an optimal strategy A¤, and A will assume that X is playing

an optimal strategy. Since the game is to increase the probability of winning, the probability

that X wins equals 1 minus the probability that A wins, so the two players' utility functions

are:

U(X;A¤) =
X

X + A¤
¡ cX

W (A;X¤) = (1¡ X¤

X¤ +A
)¡ cA

The equilibrium is de¯ned by the solution to both of these problems simultaneously. That

is, both equations must satisfy their ¯rst order conditions:

@U
@X

=
A¤

[X¤ + A¤]2
¡ c = 0

@W
@A

=
X ¤

[X¤ +A¤]2
¡ c = 0

So X ¤ = A¤ = 1
2c . Notice how di®erent the solution to a game in which two people simulta-

neously make a decision as opposed to a situation where one must take the other player as

given.

Comparative Statics. The solution to a problem, such as the optimal e®ort level in a

contest, is a function of parameters. We may further analyze how the predicted outcome

changes as the parameters vary. Such calculations are called comparative statics { predicted

variation in observed behavior as important factors vary. For example, in the decision-

theoretic version of the contest, optimal e®ort is a function of the marginal cost and the

parameter A, which one might think of as the size of the incumbent army or candidate. The

solution o®ers a speci¯c functional form: X¤ =
q
A=c¡ A. The comparative statics are:

@X¤

@c
= ¡1

2
A¡1=2c¡3=2
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@X¤

@A
=

1
2

r c
A
¡ 1

The ¯rst comparative static means that the higher the marginal cost the lower the total

e®ort. The second comparative static has an ambiguous sign. It is positive if A < c=4, an

admittedly small number.

F. Taylor's Approximation.

A ¯nal use of derivatives is that we can approximate any function using a polynomial.

This result is commonly used in statistical analyses, as we often use the ¯rst few powers of a

function to approximate a function. The result stems from Taylor's Polynomial Expansion.

f(x) ¼ x0

0!
f(0) +

x1

1!
df(0)
dx

+
(x)2

2!
d2f(0)
dx2 +

x3

3!
d3f(0)
dx3 + :::

More generally, we can make the approximation around any point ¹.

f(x) ¼ (x¡ ¹)0

0!
f(¹) +

(x¡ ¹)1

1!
df (¹)
dx

+
(x¡ ¹)2

2!
d2f (¹)
dx2 +

(x¡ ¹)3

3!
d3f(¹)
dx3 + :::

We can choose any degree of approximation we desire by incorporating higher orders of

the expansion.

Examples. f(x) = ex.

f(x) ¼ e0 + xe0 +
x2

2!
e0 +

x3

3!
e0 +

x4

4!
e0:::: =

1X

i=0

xi

i!

This was one of our de¯nitions of the function ex.

f (x) = log(x).

f(x) ¼ log(¹) +
(x ¡¹)

x
¡ (x¡ ¹)2

2x2
+ 2

(x ¡¹)3

6x3
¡ 6

(x¡ ¹)4

24x4
:::

Let ¹ = 1, then

f (x) ¼ (x¡ 1)
x

¡ (x¡ 1)2

2x2
+ 2

(x ¡ 1)3

6x3
¡ 6

(x¡ 1)4

24x4
:::

Exercise Use Taylor's theorem to approximate the normal curve e¡:5x2
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6. Summation and Integration

Summation and integration are central to probability and statistics. There are two im-

portant reasons. (1) Most statistics are averages, so we will need to understand how to sum

variables. (2) Once we have estimated parameters of interest using statistics we will make

inferences and predictions using our estimates, but our estimates come with some degree of

uncertainty. Any inferences or predictions we make, then, are about not a single point but

a range or set of observations. We will use probability to make statements about our degree

of con¯dence. We will have to sum the total amount of probability associated with a given

set or range in order to make statements about our degree of con¯dence in our estimates.

[This is a tricky issue. It is a matter of human nature that we are always more con¯dent in

hypotheses then we perhaps should be.]

We can think of the inference problem two ways. First, it is a sum: we are summing all

of the probability associated with all of the possible points in a set. Second, it is an area.

The probability curve describes the likelihood of every point along a line (or on a plane),

and the hypothesis is a prediction about a set along the line or on a plane (ie., the points

between a and b). Inference involves calculating the total area under the curve associated

with the set predicted by the hypothesis.

Integration is also commonly used in formal modeling, especially when there is a dynamic

relationship or when uncertainty is involved. Let's consider a simple uncertainty problem.

Suppose that X has an equal chance of occuring anywhere along the interval 0 to 1, but

cannot occur outside that interval. What value of X do we expect, i.e., what is the certainty

equivalent?

A. Notation.
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For discrete numbers, x1; x2; x3:::xn, we de¯ne the sum as:

nX

i=1
xi = x1 + x2 + x3 + ::: + xn

Similarly, for any function of X we can calculate the sum:
P
i g(xi). We also may have

variables summed over di®erent indexes. In statistics such sums appear when there are

di®erent levels to data, such as individuals i and counties j .

mX

j=1

nX

i=1
xij = (x11 + x21 + x31 + ::: + xn1) + ::: + (x1m + x2m + x3m + ::: + xnm)

The summation operator has the properties of any linear function. Several appear repeat-

edly in statistics, especially the features of sums of constants, linear functions and quadratics

of sums:

nX

i=1
xi = (a+ bx1) + (a + bx2) + (a + bx3) + ::: + (a + bxn) = na+ b

nX

i=1
xi

nX

i=1
(xi + yi) =

nX

i=1
xi +

nX

i=1
yi

Ã nX

i=1
(xi + yi)

!2

=
nX

i=1
x2
i +

nX

i=1
y2
i + 2

X

i>j
xiyj

When X is a continuous variable, we perform a conceptually similar operation, but as

with di®erentiation and di®erencing care needs to be taken in de¯ning how the summation

occurs. The notation for the sum of a continuous variable and a function of a continuous

variable, f(x), is de¯ned:
Z
f (x)dx

As a sum this has the properties of other sums, e.g.,
R
(a+ bf(x))dx = a

R
dx+ b

R
f (x)dx.

B. Integral de¯ned.

The integral may be thought of three ways. (1) It is the sum of the values of a continuous

function. (2) It is the area under a curve. (3) It is the inverse of the derivative. We have
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already introduced the notation as the sum of a continuous function. The second de¯nition

will allow us to construct the integral as a limit. The third de¯nition is of great utility as it

tells us a general strategy for solving integration problems: imagine the functions for which

the function inside the integral is the derivative. A function F (x) such that dF=dx = f(x)

is called a primitive of f (x).

Let's de¯ne the integral more carefully using the second concept { the area under the

curve. We would like to calculate the area under the curve f(x) between two points, a and

b. To do this let's divide the problem up into many discrete calculations and then take the

limit.

Divide the x-axis into n (equal or unequal) intervals. Let the points x1; :::xn¡1 be the

points that divide the line. The end points are x0 = a and xn = b. Let the di®erence

between successive points on the line be ±xj = xj+1 ¡ xj. Within any interval choose an

arbitrary point, say ¹j. For any one of segment, calculate the height of the function at ¹j.

We can calculate the approximate area under the curve in a given segment of X as the area

of the rectangle with height f(¹j) and base ±xj. This area is f(¹j)±xj. To calculate the

approximate area under the curve sum all of the rectangles:

Fn =
nX

j=1
f (¹j)±xj = f (¹1)(x1¡ x0) + f(¹2)(x2 ¡ x1):::f (¹n)(xn ¡ xn¡1)

The badness of the approximation is the sum of the \triangular"-shaped curves left over

from each of the rectangles. [GRAPH]

The integral is de¯ned as the limit as the number of divisions (n) increases without bound

and the width of the largest interval (±xj) shrinks to 0.

The integral over a speci¯ed region (say a to b) is called the de¯nite integral. When

boundaries are variable or when no boundaries are speci¯ed, the integral is called the

inde¯nite integral. It is important to note that di®erent de¯nite integrals of the same function

di®er only by a constant.

More speci¯cally, we denote the inde¯nite integral as the integral from a to x, where a

is a ¯xed lower bound, but the upperbound x varies.
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Two important theorems from calculus are enlightening for probability theory and statis-

tics. We'll state them here.

Fundamental Theorem

The di®erence of two primitives F1(x) and F2(x) of the same function f (x) is always a

constant: F1 ¡ F2 = k. From any one primitive we can obtain all other primitives with a

suitable choice of c. So,

F (x) = c+
Z x

a
f(u)du

Likewise, for any function f(x) the primatives are equivalent up to a constant. This provides

us with our third de¯nition of the integral and links integration to di®erentiation.

From the fundamental theorem it follows that the value of a de¯nite integral can be

calculated as the value of the primitive function evaluated at the upper limit b minus the

value of the primative function evaluated at the lower limit a. That is
Z b

a
f(x)dx = F (b) + c¡ (F (a) + c) = F (b) ¡ F (a)

Note: the constant term in the inde¯nite integral cancels giving a de¯nite solution to the

problem.

Mean Value Theorem

Let m be the smallest value of the function f (x) and M be the largest value of the

function f(x) on the interval a; b. Then there exists some point ¹ between m and M such

that
Z b

a
f(x)dx = ¹(b ¡ a)

C. Calculation of Integrals.

Using the area de¯nition and the fundamental theorem o®er two ways to calculate inte-

grals.

Let us consider a very simple function: f(x) = k if a · x · b, and 0 otherwise. Viewed as

an area, the integral is the area of a rectangle, the base times the height, i.e., k(b¡a). Viewed
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as the inverse of the derivative (the fundamental theorem), the integral is the inde¯nite

function for which a constant term k is the derivative. That is F (x) = kx+ c. To calculate

the de¯nite integral we calculate the di®erence between the primative function at the upper

bound and at the lower bound, F (b)¡ F (a) = kb + c ¡ ka ¡ c = k(b¡ a).

Consider polynomials.

A linear f(x) yields a quadratic F (x); a quadratic f(x) yields a cubic F (x) and so forth.

Z
xdx =

1
2
x2 + c

Z
x2dx =

1
3
x3 + c

Z
xndx =

1
n+ 1

xn+1 + c

Consider logarithms and exponentials.

You can verify using the fundamental theorem that

Z
log(x) = xlog(x) + c

Z
ex = ex + c

More complicated functions require more intricate integration. Some integrals cannot be

solved in \closed form" { we require a computer. One such integral is
R
ex2dx. Many prob-

lems can be solved with creative use of the di®erentiation rules. A common trick called

u-substitution involves the chain rule. Imagine that the function is such that f(x) =

(dg=dx)(df(g(x))=dg), then
R
f (x)dx = F (g(x)) + c. For example, consider f(x) = xex2 .

Let u = g(x) = x2. Then du=dx = 2x, so du = 2xdx. Because there isn't a 2 in the formula

divide by 2 and multiply by 2. We can then substitute in for u to get:

Z
xex

2
dx =

Z 1
2
eudu =

1
2
eu + c =

1
2
ex

2
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Example. In the analysis of the relationship of the distribution of public expenditures to rep-

resentation, Ansolabehere, Gerber, and Snyder (2002), regress share of public expenditures

in logarithms on share of representation in logarithms:

log(S) = ® + ¯log(R)

If we were to equalize representation how much money would underrepresented counties, i.e.,

those with R less than 1, receive? To calculate the predicted values ¯rst convert back into

the original units: St = e®R¯t . The variable R ranges from 0 to a large value, but the smallest

observed value is about .1. Second, to calculate how much underrepresented counties were

\due" we calculate the integral from R = .1 to R = 1.

Z 1

0
SdR =

Z 1

0
e®R¯dR =

e®

¯ + 1
R¯+1j1:1 = e®[1 ¡ 1

¯ + 1
:1¯+1]
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