Problem Set 11 Solution

$$
17.881 / 882
$$

December 9, 2004

1 Gibbons 4.1 (p.245)

1.1 Game A

The normal form representation of this game is the following:

	L^{\prime}	R^{\prime}
L	$(4,1)$	$(0,0)$
M	$(3,0)$	$(0,1)$
R	$(2,2)$	$(2,2)$

The pure-strategy Nash Equilibria are $\left(L, L^{\prime}\right)$ and $\left(R, R^{\prime}\right)$. Since there are no proper subgames, these are also subgame perfect.

Let us now find conditions on p such that $\left(L, L^{\prime}\right)$ and $\left(R, R^{\prime}\right)$ are perfect Bayesian equilibria.

Requirement 1

Player 2 has belief that player 1 has played L with probability p and M with probability $1-p$

Requirement 2
Given p, player 2's expected payoff from playing L^{\prime} and R^{\prime} are
$E\left(L^{\prime}\right)=p ; \quad E\left(R^{\prime}\right)=1-p$
Thus, it is sequentially rational for player 2 to choose L^{\prime} if and only if $p \epsilon[1 / 2,1]$ and R^{\prime} if and only if $p \epsilon[0,1 / 2]$.

Given player 2's belief, player 1's strategy should also be sequentially rational. If player 2 chooses L^{\prime}, player 1 should choose L. If player 2 chooses R^{\prime}, player 1 should choose R.

Requirement 3

Consider the NE (L, L^{\prime}). Player 2 gets to play on the equilibrium path. Thus, player 2's belief p must be 1 . So ($L, L^{\prime}, p=1$) represents a pbe.

Consider the NE $\left(R, R^{\prime}\right)$. Player 2 does not have to play on the equilibrium path. Requirement 3 places no restrictions on p

Requirement 4
(R, R^{\prime}) is off the equilibrium path. Requirement 4 does not impose any restriction on p.

To sum up, we have the following two perfect Bayesian equilibria:
$\left(L, L^{\prime}, p=1\right),\left(R, R^{\prime}, p \epsilon[0,1 / 2]\right)$

1.2 Game B

The normal form representation of this game is the following:

	L^{\prime}	M^{\prime}	R^{\prime}
L	$(1,3)$	$(1,2)$	$(4,0)$
M	$(4,0)$	$(0,2)$	$(3,3)$
R	$(2,4)$	$(2,4)$	$(2,4)$

The only pure-strategy Nash Equilibria is $\left(R, M^{\prime}\right)$. Let us now find conditions on p such that this equilibrium is perfect Bayesian.

Requirement 1

Player 2 has belief that player 1 has played L with probability p and M with probability $1-p$

Requirement 2

Given p, player 2's expected payoff from playing L^{\prime}, M^{\prime} and R^{\prime} are
$E\left(L^{\prime}\right)=3 p ; \quad E\left(M^{\prime}\right)=2 ; \quad E\left(R^{\prime}\right)=3(1-p)$
When is it sequentially rational for player 2 to play $M^{\prime} ? M^{\prime}$ brings a higher expected payoff than L^{\prime} if and only if $p \epsilon[0,2 / 3]$; it brings a higher expected payoff than R^{\prime} if and only if $p \epsilon[1 / 3,1]$. The intersection of these two conditions is $p \epsilon[1 / 3,2 / 3]$.

Given player 2's belief, player 1's strategy should also be sequentially rational. If player 2 chooses M^{\prime}, player 1 should choose R.

Requirement 3

Player 2 does not have to play on the equilibrium path. Requirement 3 places no restrictions on p.

Requirement 4

(R, M^{\prime}) is off the equilibrium path. Requirement 4, by itself, does not impose any restriction on p. We only require that player 2's belief makes $\left(R, M^{\prime}\right)$ the optimal strategy for both players. From requirement 2, we have that $\left(R, M^{\prime}, p \epsilon[1 / 3,2 / 3]\right)$ is a pure-strategy perfect Bayesian equilibrium.

