Problem Set 6 Solution

17.881/882

November 5, 2004

1 Gibbons 2.4

Let us find the best-response for player 2 .
If $c_{1} \geq R \Longrightarrow U_{2}=V \quad \forall c_{2}$
If $c_{2}<0 \Longrightarrow U_{2}=V-c_{2}^{2} \quad \forall c_{2} \geq R-c_{1}$ and $U_{2}=0 \forall c_{2}<R-c_{1}$.
From this, we have
$B R_{2}\left(c_{1}\right)=$

0	if $c_{1} \geq R$ or $c_{1}<R-\sqrt{V}$
$R-c_{1}$	if $R-\sqrt{V}<c_{1}<R$
$\epsilon\{0, \sqrt{V}\}$	if $c_{1}=R-\sqrt{V}$

Anticipating this response from player 2, player 1 conjectures that his payoff is as follows.

If $c_{1} \geq R \Longrightarrow U_{1}=V-c_{1}^{2}$
If $R-\sqrt{V}<c_{1}<R \Longrightarrow U_{1}=\delta V-c_{1}^{2}$
We need to consider different cases here. If $R-\sqrt{V}<0$, then we have characterised all possible payoffs for $c_{1} \geq 0$.

If $R-\sqrt{V}=0$, then we have that if $c_{1}=0, U_{1} \epsilon\{\delta V, 0\}$ depending on the decision of player 2 to invest or not.

If $R-\sqrt{V}>0$, then for $c_{1} \epsilon[0, R-\sqrt{V}), U_{1}=-c_{1}^{2}$ and for $c_{1}=R-\sqrt{V}$, $U_{1} \epsilon\left\{\delta V-c_{1}^{2}, 0\right\}$ depending on the decision of player 2 to invest or not.

From these observations, we can derive the Nash Equilibrium outcomes (I stress outcomes; I'll only specify an outcome for player 2; a Nash Equilibrium strategy would write the full best-response correspondence for player 2 as written above).
$1.1 \quad R-\sqrt{V}<0$
Here, player 1 is choosing between $c_{1}=0$ and $c_{1}=R$, with $U_{1}\left(0, B R_{2}(0)\right)=\delta V$; $U_{1}\left(R, B R_{2}(R)\right)=V-R^{2}$

Let us write $c_{i}^{N E O}$ for the outcome of player i's choice in a Nash Equilibrium. So, we have $\left(c_{1}^{N E O}, c_{2}^{N E O}\right)=$

$(0, R)$	if $R>[(1-\delta) V]^{1 / 2}$
$(R, 0)$	if $R<[(1-\delta) V]^{1 / 2}$
$\{(0, R),(R, 0)\}$	if $R=[(1-\delta) V]^{1 / 2}$

$1.2 \quad R-\sqrt{V}=0$

Here, we add the possibility that player 1 plays $R-\sqrt{V}$, where his payoffs depend on player 2's strategy. Player 2 is indifferent between $c_{2}=\sqrt{V}$ and $c_{2}=0$. Let us assume that player 2 is playing the former strategy with probability p and the latter with probability $1-p$. Then it is easy to see that there is no Nash Equilibrium where $p \neq 1$. Why? Because then player 1 has no best-response. $U_{1}\left(R, B R_{2}(R)\right)=V-R^{2}=0, U_{1}\left(\varepsilon, B R_{2}(\varepsilon)\right)=\delta V-\varepsilon^{2}$ and $U_{1}(0, p * \sqrt{V}+(1-p) * 0)=p \delta V$.

Then, if $p \neq 1, U_{1}\left(\varepsilon, B R_{2}(\varepsilon)\right)>U_{1}(0, p * \sqrt{V}+(1-p) * 0) \Leftrightarrow \varepsilon<\sqrt{(1-p) \delta V}$, which can always be satisfied for ε sufficiently small. But, there is no unique strategy $\varepsilon>0$ that maximises $U_{1}\left(\varepsilon, B R_{2}(\varepsilon)\right) \ldots$ So, we will assume that $p=1$. Then we have $\left(c_{1}^{N E O}, c_{2}^{N E O}\right)=(0, R)$

$1.3 \quad R-\sqrt{V}>0$

In addition to the previous case, we add the possibility that player 1 plays $c_{1}<R-\sqrt{V}$, in which case $U_{1}=-c_{1}^{2}$. Of course, we need only to retain the value $c_{1}=0$ within that interval. Yet again it is clear that we cannot have a Nash Equilibrium where player 2 is playing $c_{2}=0$ with some probability when $c_{1}=R-\sqrt{V} .{ }^{1}$ So, we have $\left(c_{1}^{N E O}, c_{2}^{N E O}\right)=$

$(0,0)$	if $R>(1+\sqrt{\delta}) \sqrt{V}$
$(R-\sqrt{V}, \sqrt{V})$	if $R<(1+\sqrt{\delta}) \sqrt{V}$
$\{(0,0),(R-\sqrt{V}, \sqrt{V})\}$	if $R=(1+\sqrt{\delta}) \sqrt{V}$

[^0]
[^0]: ${ }^{1}$ The choices for 1 boil down to the following possible strategies, with the corresponding payoffs: $U_{1}\left(R, B R_{2}(R)\right)=V-R^{2}<0, U_{1}\left(0, B R_{2}(0)\right)=0$ and $U_{1}\left(\gamma(R-\sqrt{V}), B R_{2}(\gamma(R-\right.$ $\sqrt{V})))=\delta V-(\gamma(R-\sqrt{V}))^{2}$ where $1<\gamma<\frac{R}{R-\sqrt{V}} ; U_{1}((R-\sqrt{V}), p * \sqrt{V}+(1-p) * 0)=$ $p \delta V-(R-\sqrt{V})^{2}$. If $p \neq 1, U_{1}\left(\gamma(R-\sqrt{V}), B R_{2}(\gamma(R-\sqrt{V}))\right)>U_{1}((R-\sqrt{V}), p * \sqrt{V}+$ $(1-p) * 0) \Leftrightarrow\left(\gamma^{2}-1\right)(R-\sqrt{V})^{2}<(1-p) \delta V$ is satisfied for γ close enough to 1. But again,
 there is no unique γ that maximises $U_{1}\left(\gamma(R-\sqrt{V}), B R_{2}(\gamma(R-\sqrt{V}))\right.$). (Note: I guess this depends on δ being large enough- you can always set $c_{1}=0$ and get 0 - but I will ignore this at this point).

