Overview: Game Theory and Competitive Strategy I

Small Numbers and Strategic Behavior

- Fun and games with a duopoly example
 - Simultaneous vs. sequential choice
 - One-time vs. repeated game
 - Quantity vs. price as the choice variable
 - Homogeneous vs. differentiated good
- Review of the analytics

The Game (a)

- Objective: Max. <u>your</u> profit
- # of plays: 1 only
- Good: Homogeneous
- Choice variable: Quantity
- Timing of choice: Simultaneous

Game Payoffs								
		Firm 2 (competitor)						
		15	20	22.5	30			
Firm 1 (you)	15	450, 450	375, 500	338, 506	225, 450			
	20	500, 375	400, 400	350, 394	200, 300			
	22.5	506, 338	394, 350	338, 338	125, 150			
	30	450, 225	300, 200	150, 125	0, 0			
				1	1			

The Game (a*)

- Objective: Max. <u>your</u> profit
- *#* of plays: 2
- Good: Homogeneous
- Choice variable: Quantity
- Timing of choice: Simultaneous

The Game (a**)

- Objective: Max. <u>your</u> profit
- *#* of plays: 10
- Good: Homogeneous
- Choice variable: Quantity
- Timing of choice: Simultaneous

- Homogeneous good, simultaneous choice
- Choosing quantity, Q
- Objective: Max. your profit
- Market demand:

P = 60 - Q

• Production:

 $Q = Q_1 + Q_2$ $MC_1 = MC_2 = 0$

Cournot Equilibrium

• Symmetric reaction curves:

$Q_1 =$	= 30 -	- 1/2 Q ₂	(Firm 1)
_			

- $Q_2 = 30 1/2 Q_1$ (Firm 2)
- Equilibrium: $Q_1 = Q_2 = 20$
- Total quantity: $Q = Q_1 + Q_2 = 40$
- Price: P = 60 Q = 20
- Profits: $\Pi_1 = \Pi_2 = 20.20 = 400$

Duopoly Analytics -- Collusion

Demand: P = 60 - Q $\Pi = P \cdot Q - Costs = (60 - Q) \cdot Q$ $\frac{d\Pi}{dQ} = 60 - 2Q = 0$ $\Rightarrow Q = Q_1 + Q_2 = 30, P = 30$ Total joint $\Pi = 30(30) = 900$ If split equally, $\Pi_1 = \Pi_2 = 450$

	Game Payoffs								
		Firm 2 (competitor)							
		15	20	22.5	30				
Firm 1 (you)	15	450, 450	375, 500	338, 506	225, 450				
	20	500, 375	400, 400	350, 394	200, 300				
	22.5	506, 338	394, 350	338, 338	125, 150				
	30	450, 225	300, 200	150, 125	0, 0				
				1	¥				

Analytics with a First Mover (Decision variable is Q)

- Suppose Firm 1 moves first
- In setting output, Firm 1 should consider how Firm 2 will respond
- We know how Firm 2 will respond! It will follow its Cournot reaction curve: $Q_2 = 30 - 1/2 Q_1$
- So Firm 1 will maximize taking this information into account

First Mover: Max Π *given* the Reaction of the Follower

• Firm 1 revenue:

$$R_{1} = Q_{1}P = Q_{1}(60 - [Q_{1} + Q_{2}])$$
Firm 2's Reaction
= $60Q_{1} - (Q_{1})^{2} - Q_{1}Q_{2}$
= $60Q_{1} - (Q_{1})^{2} - Q_{1} (30 - \frac{1}{2}Q_{1})$
= $30Q_{1} - \frac{1}{2} (Q_{1})^{2}$

• Firm 1 marginal revenue: $MR_1 = dR_1/dQ_1 = 30 - Q_1$

The Game (c)

- Objective: Max. <u>your</u> profit
- *#* of plays: 1
- Good: Homogeneous
- Choice variable: Price
- Timing of choice: Simultaneous

Strategic Substitutes vs Complements

- Strategic Complement: reactions match e.g. lower price is reaction to competitor's lower price
- Strategic Substitute: opposite reactions e.g. lower quantity is reaction to competitor's higher quantity
- Competition tends to be more aggressive with strategic complements than with substitutes.

Take Away Points

- Game theory allows the analysis of situations with interdependence.
- Nash Equilibrium: Each player doing the best he/she can, given what the other is doing.
- Competition in strategic complements (price) tends to be tougher than in substitutes (quantity).
- Commitment is important since you change the rules of the game. It can lead to a first-mover advantage.
- Repetition can lead to cooperation, but only when the end-game is uncertain or far away.

