Overview: Game Theory and Competitive Strategy I

Small Numbers and Strategic Behavior

- Fun and games with a duopoly example
- Simultaneous vs. sequential choice
- One-time vs. repeated game
- Quantity vs. price as the choice variable
- Homogeneous vs. differentiated good
- Review of the analytics

Key Ideas

- Know strategic situation (What is the game?).
- Your competitor is just as smart as you are!
- Think about the response of others
- Nash equilibrium: all participants do the best they can, given the behavior of competitors.

The Game (a)

- Objective: Max. your profit
- \# of plays: 1 only
- Good: Homogeneous
- Choice variable: Quantity
- Timing of choice: Simultaneous

Game Payoffs

Firm 2 (competitor)

Firm 15
(you)
20
$15 \quad 20$

Game Payoffs

Firm 2 (competitor)

		15	20	22.5	30
	15	450,450	375,500	338,506	225,450
Firm 1 (you)	20	500,375	400,400	350,394	200,300
	22.5	506,338	394,350	338,338	125,150
	30	450,225	300,200	150,125	0,0

The Game (a*)

- Objective: Max. your profit
- \# of plays: 2
- Good: Homogeneous
- Choice variable: Quantity
- Timing of choice: Simultaneous

The Game (a**)

- Objective:

Max. your profit

- \# of plays:

10

- Good: Homogeneous
- Choice variable: Quantity
- Timing of choice: Simultaneous

Analytics: Simultaneous Cournot

- Homogeneous good, simultaneous choice
- Choosing quantity, Q
- Objective: Max. your profit
- Market demand:

$$
P=60-Q
$$

- Production:

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2} \\
& \mathrm{MC}_{1}=\mathrm{MC}_{2}=0
\end{aligned}
$$

What Is the Firm's Reaction Curve?

(Firm 1 example)

- To max profit, set MR = MC

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{PQ}_{1}=(60-\mathrm{Q}) \mathrm{Q}_{1} \\
&= 60 \mathrm{Q}_{1}-\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right) \mathrm{Q}_{1} \\
&= 60 \mathrm{Q}_{1}-\left(\mathrm{Q}_{1}\right)^{2}-\mathrm{Q}_{2} \mathrm{Q}_{1} \\
& \mathrm{MR}_{1}= \mathrm{dR}_{1} / \mathrm{dQ}_{1}=60-2 \mathrm{Q}_{1}-\mathrm{Q}_{2} \\
& \text { Set } \mathrm{MR}_{1}=M C=0, \text { which yields } \\
& \mathrm{Q}_{1}=30-1 / 2 \mathrm{Q}_{2} \quad \text { (Firm } 1 \text { reaction curve) }
\end{aligned}
$$

Cournot Equilibrium

- Symmetric reaction curves:

$$
\begin{array}{ll}
\mathrm{Q}_{1}=30-1 / 2 \mathrm{Q}_{2} & (\text { Firm 1) } \\
\mathrm{Q}_{2}=30-1 / 2 \mathrm{Q}_{1} & \text { (Firm 2) }
\end{array}
$$

- Equilibrium: $\mathrm{Q}_{1}=\mathrm{Q}_{2}=20$
- Total quantity: $\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=40$
- Price: $\quad \mathrm{P}=60-\mathrm{Q}=20$
- Profits:
$\Pi_{1}=\Pi_{2}=20 \cdot 20=400$

Duopoly: Graphical Version

Duopoly Analytics -- Collusion

Demand: $\quad \mathrm{P}=60-\mathrm{Q}$

$$
\begin{aligned}
& \Pi=\mathrm{P} \cdot \mathrm{Q}-\text { costs }=(60-\mathrm{Q}) \cdot \mathrm{Q} \\
& \frac{d \Pi}{d Q}=60-2 Q=0 \\
& \quad \Rightarrow \mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=30, \mathrm{P}=30
\end{aligned}
$$

Total joint $\Pi=30(30)=900$
If split equally, $\Pi_{1}=\Pi_{2}=450$

The Game (b)

- Objective: Max. your profit
- \# of plays:
- Good:

Homogeneous

- Choice variable: Q
- Timing of choice: Someone goes first

Game Payoffs

Firm 2 (competitor)

		15	20	22.5	30
	15	450,450	375,500	338,506	225,450
Firm 1 (you)	20	500,375	400,400	350,394	200,300
	22.5	506,338	394,350	338,338	125,150
	30	450,225	300,200	150,125	0,0

Analytics with a First Mover

(Decision variable is Q)

- Suppose Firm 1 moves first
- In setting output, Firm 1 should consider how Firm 2 will respond
- We know how Firm 2 will respond! It will follow its Cournot reaction curve:

$$
\mathrm{Q}_{2}=30-1 / 2 \mathrm{Q}_{1}
$$

- So Firm 1 will maximize taking this information into account

First Mover: Max П given the Reaction of the Follower

- Firm 1 revenue:

$$
\begin{aligned}
\mathrm{R}_{1} & =\mathrm{Q}_{1} \mathrm{P}=\mathrm{Q}_{1}\left(60-\left[\mathrm{Q}_{1}+\mathrm{Q}_{2}\right]\right) \\
& =60 \mathrm{Q}_{1}-\left(\mathrm{Q}_{1}\right)^{2}-\mathrm{Q}_{1} \mathrm{Q}_{2} \\
& =60 \mathrm{Q}_{1}-\left(\mathrm{Q}_{1}\right)^{2}-\mathrm{Q}_{1}\left(30-1 / 2 \mathrm{Q}_{1}\right) \\
& =30 \mathrm{Q}_{1}-1 / 2\left(\mathrm{Q}_{1}\right)^{2}
\end{aligned}
$$

- Firm 1 marginal revenue:

$$
\mathrm{MR}_{1}=\mathrm{dR}_{1} / \mathrm{dQ}_{1}=30-\mathrm{Q}_{1}
$$

First Mover - The Result

- Firm 1 marginal revenue:

$$
\mathrm{MR}_{1}=30-\mathrm{Q}_{1}
$$

- Set $\mathrm{MR}_{1}=\mathrm{MC}(=0)$, and

$$
\mathrm{Q}_{1}=30
$$

$$
\mathrm{Q}_{2}=30-1 / 2 \mathrm{Q}_{1}=15
$$

- Price: $\mathrm{P}=60-\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right)=15$
- Profits: $\Pi_{1}=30 \cdot 15=450$

$$
\Pi_{2}=15 \cdot 15=225
$$

The Game (c)

- Objective: Max. your profit
- \# of plays:

1

- Good: Homogeneous
- Choice variable: Price
- Timing of choice: Simultaneous

Strategic Substitutes vs Complements

- Strategic Complement: reactions match e.g. lower price is reaction to competitor's lower price
- Strategic Substitute: opposite reactions e.g. lower quantity is reaction to competitor's higher quantity
- Competition tends to be more aggressive with strategic complements than with substitutes.

The Game (c*)

- Objective: Max. your profit
- \# of plays: 1
- Good: Differentiated
- Choice variable: Price
- Timing of choice: Simultaneous

Take Away Points

- Game theory allows the analysis of situations with interdependence.
- Nash Equilibrium: Each player doing the best he/she can, given what the other is doing.
- Competition in strategic complements (price) tends to be tougher than in substitutes (quantity).
- Commitment is important since you change the rules of the game. It can lead to a first-mover advantage.
- Repetition can lead to cooperation, but only when the end-game is uncertain or far away.

Preparation for Next Time

Regarding "Lesser Antilles Lines" Case:

- Good case for developing game and payoff analysis (assumptions, payoffs, etc.).
- You do NOT need to prepare this for class (part of Problem Set 5).

